505 research outputs found

    CogCell: Cognitive Interplay between 60GHz Picocells and 2.4/5GHz Hotspots in the 5G Era

    Full text link
    Rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G--4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G-era, 80\% of overall traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60\,GHz mmWave picocell architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a combination of-, and interplay between, 2.4/5\,GHz having robust coverage and 60\,GHz links offering high datarate. This requires an intelligent coordination and cooperation. We propose 60\,GHz picocellular network architecture, called CogCell, leveraging the ubiquitous WiFi. We propose to use 60\,GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5\,GHz in case of poor connectivity in the 60\,GHz domain. Further, to avoid the frequent re-beamforming in 60\,GHz directional links due to mobility, we propose a cognitive module -- a sensor-assisted intelligent beam switching procedure -- which reduces the communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.Comment: 14 PAGES in IEEE Communications Magazine, Special issue on Emerging Applications, Services and Engineering for Cognitive Cellular Systems (EASE4CCS), July 201

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Algorithms and protocols for multi-channel wireless networks

    Get PDF
    A wireless channel is shared by all devices, in the vicinity, that are tuned to the channel, and at any given time, only one of the devices can transmit information. One way to overcome this limitation, in throughput capacity, is to use multiple orthogonal channels for different devices, that want to transmit information at the same time. In this work, we consider the use of multiple orthogonal channels in wireless data networks. We explore algorithms and protocols for such multi-channel wireless networks under two broad categories of network-wide and link-level challenges. Towards handling the network-wide issues, we consider the channel assignment and routing issues in multi-channel wireless networks. We study both single radio and multi-radio multi-channel networks. For single radio multi-channel networks, we propose a new granularity for channel assignment, that we refer to as component level channel assignment. The strategy is relatively simple, and is characterized by several impressive practical advantages. For multi-radio multi-channel networks, we propose a joint routing and channel assignment protocol, known as Lattice Routing. The protocol manages channels of the radios, for the different nodes in the network, using information about current channel conditions, and adapts itself to varying traffic patterns, in order to efficiently use the multiple channels. Through ns2 based simulations, we show how both the protocols outperform other existing protocols for multi-channel networks under different network environments. Towards handling the link-level challenges, we identify the practical challenges in achieving a high data-rate wireless link across two devices using multiple off-the-shelf wireless radios. Given that the IEEE 802.11 a/g standards define 3 orthogonal wi-fi channels in the 2.4GHz band and 12 orthogonal wi-fi channels in the 5GHz band, we answer the following question: ``can a pair of devices each equipped with 15 wi-fi radios use all the available orthogonal channels to achieve a high data-rate link operating at 600Mbps?' Surprisingly, we find through experimental evaluation that the actual observed performance when using all fifteen orthogonal channels between two devices is a mere 91Mbps. We identify the reasons behind the low performance and present Glia, a software only solution that effectively exercises all available radios. We prototype Glia and show using experimental evaluations that Glia helps achieve close to 600Mbps data-rate when using all possible wi-fi channels.PhDCommittee Chair: Sivakumar, Raghupathy; Committee Member: Blough, Doug; Committee Member: Coyle, Edward; Committee Member: Eidenbenz, Stephan; Committee Member: Fekri, Faramar

    An Adaptive Packet Aggregation Algorithm (AAM) for Wireless Networks

    Get PDF
    Packet aggregation algorithms are used to improve the throughput performance by combining a number of packets into a single transmission unit in order to reduce the overhead associated with each transmission within a packet-based communications network. However, the throughput improvement is also accompanied by a delay increase. The biggest drawback of a significant number of the proposed packet aggregation algorithms is that they tend to only optimize a single metric, i.e. either to maximize throughput or to minimize delay. They do not permit an optimal trade-off between maximizing throughput and minimizing delay. Therefore, these algorithms cannot achieve the optimal network performance for mixed traffic loads containing a number of different types of applications which may have very different network performance requirements. In this thesis an adaptive packet aggregation algorithm called the Adaptive Aggregation Mechanism (AAM) is proposed which achieves an aggregation trade-off in terms of realizing the largest average throughput with the smallest average delay compared to a number of other popular aggregation algorithms under saturation conditions in wireless networks. The AAM algorithm is the first packet aggregation algorithm that employs an adaptive selection window mechanism where the selection window size is adaptively adjusted in order to respond to the varying nature of both the packet size and packet rate. This algorithm is essentially a feedback control system incorporating a hybrid selection strategy for selecting the packets. Simulation results demonstrate that the proposed algorithm can (a) achieve a large number of sub-packets per aggregate packet for a given delay and (b) significantly improve the performance in terms of the aggregation trade-off for different traffic loads. Furthermore, the AAM algorithm is a robust algorithm as it can significantly improve the performance in terms of the average throughput in error-prone wireless networks

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect

    Get PDF
    AbstractIntegration of Distributed Renewable Generation (DRG) to the future Smart Grid (SG) is one of the important considerations that is highly prioritized in the SG development roadmap by most of the countries including Malaysia. The plausible way of this integration is the enhancement of information and bidirectional communication infrastructure for energy monitoring and controlling facilities. However, urgency of data delivery through maintaining critical time condition is not crucial in these facilities. In this paper, we have surveyed state-of-the-art protocols for different Wireless Sensor Networks (WSNs) with the aim of realizing communication infrastructure for DRG in Malaysia. Based on the analytical results from surveys, data communication for DRG should be efficient, flexible, reliable, cost effective, and secured. To meet this achievement, IEEE802.15.4 supported ZigBee PRO protocol together with sensors and embedded system is shown as Wireless Sensor (WS) for DRG bidirectional network with prospect of attaining data monitoring facilities. The prospect towards utilizing ZigBee PRO protocol can be a cost effective option for full integration of intelligent DRG and small scale Building-Integrated Photovoltaic (BIPV)/Feed-in-Tariff (FiT) under SG roadmap (Phase4: 2016–2017) conducted by Malaysia national utility company, Tenaga Nasional Berhad (TNB). Moreover, we have provided a direction to utilize the effectiveness of ZigBee-WS network with the existing optical communication backbone for data importing from the end DRG site to the TNB control center. A comparative study is carried out among developing countries on recent trends of SG progress which reveals that some common projects like smart metering and DRG integration are on priority
    • …
    corecore