238 research outputs found

    SPHEREx: an all-sky NIR spectral survey

    Get PDF
    SPHEREx, a mission in NASA’s Medium Explorer (MIDEX) program recently selected for Phase-A implementation, is an all-sky survey satellite that will produce a near-infrared spectrum for every 6 arcsecond pixel on the sky. SPHEREx has a simple, high-heritage design with large optical throughput to maximize spectral mapping speed. While the legacy data products will provide a rich archive of spectra for the entire astronomical community to mine, the instrument is optimized for three specific scientific goals: to probe inflation through the imprint primordial non-Gaussianity left on today’s large-scale cosmological structure; to survey the Galactic plane for water and other biogenic ices through absorption line studies; and to constrain the history of galaxy formation through power spectra of background fluctuations as measured in deep regions near the ecliptic poles. The aluminum telescope consists of a heavily baffled, wide-field off-axis reflective triplet design. The focal plane is imaged simultaneously by two mosaics of H2RG detector arrays separated by a dichroic beamsplitter. SPHEREx assembles spectra through the use of mass and volume efficient linear variable filters (LVFs) included in the focal plane assemblies, eliminating the need for any dispersive or moving elements. Instead, spectra are constructed through a series of small steps in the spacecraft attitude across the sky, modulating the location of an object within the FOV and varying the observation wavelength in each exposure. The spectra will cover the wavelength range between 0.75 and 5.0 µm at spectral resolutions ranging between R=35 and R=130. The entire telescope is cooled passively by a series of three V-groove radiators below 80K. An additional stage of radiative cooling is included to reduce the long wavelength focal plane temperature below 60K, controlling the dark current. As a whole, SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=103r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected

    Cosmological Simulations of Galaxy Formation

    Full text link
    Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.Comment: To appear in Nature Reviews Physics. 34 pages, 2 figures, 2 table

    The Formation and Dynamics of Clouds in the Environment of Active Galactic Nuclei

    Full text link
    Active galactic nuclei (AGN) are among the most luminous objects in the universe and are known to be powered by accretion onto supermassive black holes in the centers of galaxies. AGN clouds are prominent components of successful models that attempt to unify the diversity of AGN. These clouds are often hypothesized to be the source of the broad and narrow line emission features seen in AGN spectra. Moreover, the high column densities of gas needed to account for broad absorption lines has been attributed to the same population of clouds, while the motion of AGN clouds has been invoked to explain the spectral variability observed in both broad absorption lines and warm absorbers. Despite the importance of AGN clouds for explaining phenomena associated with AGN, we still lack a comprehensive understanding of the origin, dynamics, lifetime, and properties of these clouds. This thesis is an attempt to lay the groundwork for such a comprehensive model. After summarizing the known physics of AGN clouds and our modeling framework (i.e. the equations of hydrodynamics), we review the linear theory of the thermal instability (TI), which provides a natural mechanism to form clouds. We then extend this theory of cloud formation to account for the role of cloud acceleration, which must accompany the nonlinear regime of TI. After presenting hydrodynamical simulations that demonstrate how cloud formation and acceleration are intertwined processes, we explore how the efficiency of cloud acceleration is affected by the inclusion of flux variability. We find that the acceleration can more than double when the period of flux oscillations is longer than the thermal timescale of the gas. Next we calculate synthetic absorption line profiles to determine how clouds evolving along the line of sight would appear to a distant observer. We identify a spectral signature for cloud acceleration in the case of absorption line doublets. Finally, we show how global hydrodynamical simulations can be used to make predictions for the observables obtainable from reverberation mapping campaigns. We conclude with a summary of our findings and the next steps needed to further develop a comprehensive model of AGN clouds

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore