411 research outputs found

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    Rational Multiparty Computation

    Get PDF
    The field of rational cryptography considers the design of cryptographic protocols in the presence of rational agents seeking to maximize local utility functions. This departs from the standard secure multiparty computation setting, where players are assumed to be either honest or malicious. ^ We detail the construction of both a two-party and a multiparty game theoretic framework for constructing rational cryptographic protocols. Our framework specifies the utility function assumptions necessary to realize the privacy, correctness, and fairness guarantees for protocols. We demonstrate that our framework correctly models cryptographic protocols, such as rational secret sharing, where existing work considers equilibrium concepts that yield unreasonable equilibria. Similarly, we demonstrate that cryptography may be applied to the game theoretic domain, constructing an auction market not realizable in the original formulation. Additionally, we demonstrate that modeling players as rational agents allows us to design a protocol that destabilizes coalitions. Thus, we establish a mutual benefit from combining the two fields, while demonstrating the applicability of our framework to real-world market environments.^ We also give an application of game theory to adversarial interactions where cryptography is not necessary. Specifically, we consider adversarial machine learning, where the adversary is rational and reacts to the presence of a data miner. We give a general extension to classification algorithms that returns greater expected utility for the data miner than existing classification methods

    Oblivious Transfer in Incomplete Networks

    Get PDF
    Secure message transmission and Byzantine agreement have been studied extensively in incomplete networks. However, information theoretically secure multiparty computation (MPC) in incomplete networks is less well understood. In this paper, we characterize the conditions under which a pair of parties can compute oblivious transfer (OT) information theoretically securely against a general adversary structure in an incomplete network of reliable, private channels. We provide characterizations for both semi-honest and malicious models. A consequence of our results is a complete characterization of networks in which a given subset of parties can compute any functionality securely with respect to an adversary structure in the semi-honest case and a partial characterization in the malicious case

    Is Information-Theoretic Topology-Hiding Computation Possible?

    Get PDF
    Topology-hiding computation (THC) is a form of multi-party computation over an incomplete communication graph that maintains the privacy of the underlying graph topology. Existing THC protocols consider an adversary that may corrupt an arbitrary number of parties, and rely on cryptographic assumptions such as DDH. In this paper we address the question of whether information-theoretic THC can be achieved by taking advantage of an honest majority. In contrast to the standard MPC setting, this problem has remained open in the topology-hiding realm, even for simple privacy-free functions like broadcast, and even when considering only semi-honest corruptions. We uncover a rich landscape of both positive and negative answers to the above question, showing that what types of graphs are used and how they are selected is an important factor in determining the feasibility of hiding topology information-theoretically. In particular, our results include the following. We show that topology-hiding broadcast (THB) on a line with four nodes, secure against a single semi-honest corruption, implies key agreement. This result extends to broader classes of graphs, e.g., THB on a cycle with two semi-honest corruptions. On the other hand, we provide the first feasibility result for information-theoretic THC: for the class of cycle graphs, with a single semi-honest corruption. Given the strong impossibilities, we put forth a weaker definition of distributional-THC, where the graph is selected from some distribution (as opposed to worst-case). We present a formal separation between the definitions, by showing a distribution for which information theoretic distributional-THC is possible, but even topology-hiding broadcast is not possible information-theoretically with the standard definition. We demonstrate the power of our new definition via a new connection to adaptively secure low-locality MPC, where distributional-THC enables parties to reuse a secret low-degree communication graph even in the face of adaptive corruptions

    Sociotechnical Safeguards for Genomic Data Privacy

    Get PDF
    Recent developments in a variety of sectors, including health care, research and the direct-to-consumer industry, have led to a dramatic increase in the amount of genomic data that are collected, used and shared. This state of affairs raises new and challenging concerns for personal privacy, both legally and technically. This Review appraises existing and emerging threats to genomic data privacy and discusses how well current legal frameworks and technical safeguards mitigate these concerns. It concludes with a discussion of remaining and emerging challenges and illustrates possible solutions that can balance protecting privacy and realizing the benefits that result from the sharing of genetic information

    Towards Practical Topology-Hiding Computation

    Get PDF
    \par Topology-hiding computation (THC) enables nn parties to perform a secure multiparty computation (MPC) protocol in an incomplete communication graph while keeping the communication graph hidden. The work of Akavia et al. (CRYPTO 2017 and JoC 2020) shown that THC is feasible for any graph. In this work, we focus on the efficiency of THC and give improvements for various tasks including broadcast, sum and general computation. We mainly consider THC on undirected cycles, but we also give two results for THC on general graphs. All of our results are derived in the presence of a passive adversary statically corrupting any number of parties. \par In the undirected cycles, the state-of-the-art topology-hiding broadcast (THB) protocol is the Akavia-Moran (AM) protocol of Akavia et al. (EUROCRYPT 2017). We give an optimization for the AM protocol such that the communication cost of broadcasting O(Îș)O(\kappa) bits is reduced from O(n2Îș2)O(n^2\kappa^2) bits to O(n2Îș)O(n^2\kappa) bits. We also consider the sum and general computation functionalities. Previous to our work, the only THC protocols realizing the sum and general computation functionalities are constructed by using THB to simulate point-to-point channels in an MPC protocol realizing the sum and general computation functionalities, respectively. By allowing the parties to know the exact value of the number of the parties (the AM protocol and our optimization only assume the parties know an upper bound of the number of the parties), we can derive more efficient THC protocols realizing these two functionalities. As a result, comparing with previous works, we reduce the communication cost by a factor of O(nÎș)O(n\kappa) for both the sum and general computation functionalities. \par As we have mentioned, we also get two results for THC on general graphs. The state-of-the-art THB protocol for general graphs is the Akavia-LaVigne-Moran (ALM) protocol of Akavia et al. (CRYPTO 2017 and JoC 2020). Our result is that our optimization for the AM protocol also applies to the ALM protocol and can reduce its communication cost by a factor of O(Îș)O(\kappa). Moreover, we optimize the fully-homomorphic encryption (FHE) based GTHC protocol of LaVigne et al. (TCC 2018) and reduce its communication cost from O(n8Îș2)O(n^8\kappa^2) FHE ciphertexts and O(n5Îș)O(n^5\kappa) FHE public keys to O(n6Îș)O(n^6\kappa) FHE ciphertexts and O(n5Îș)O(n^5\kappa) FHE public keys

    On the Communication Efficiency of Statistically-Secure Asynchronous MPC with Optimal Resilience

    Get PDF
    Secure multi-party computation (MPC) is a fundamental problem in secure distributed computing. An MPC protocol allows a set of nn mutually distrusting parties with private inputs to securely compute any publicly-known function of their inputs, by keeping their respective inputs as private as possible. While several works in the past have addressed the problem of designing communication-efficient MPC protocols in the synchronous communication setting, not much attention has been paid to the design of efficient MPC protocols in the asynchronous communication setting. In this work, we focus on the design of efficient asynchronous MPC (AMPC) protocol with statistical security, tolerating a computationally unbounded adversary, capable of corrupting up to tt parties out of the nn parties. The seminal work of Ben-Or, Kelmer and Rabin (PODC 1994) and later Abraham, Dolev and Stern (PODC 2020) showed that the optimal resilience for statistically-secure AMPC is t<n/3t < n/3. Unfortunately, the communication complexity of the protocol presented by Ben-Or et al is significantly high, where the communication complexity per multiplication is Ω(n13Îș2log⁥n)\Omega(n^{13} \kappa^2 \log n) bits (where Îș\kappa is the statistical-security parameter). To the best of our knowledge, no work has addressed the problem of improving the communication complexity of the protocol of Ben-Or at al. In this work, our main contributions are the following. -- We present a new statistically-secure AMPC protocol with the optimal resilience t<n/3t < n/3 and where the communication complexity is O(n4Îș){\mathcal O}(n^4 \kappa) bits per multiplication. Apart from improving upon the communication complexity of the protocol of Ben-Or et al, our protocol is relatively simpler and based on very few sub-protocols, unlike the protocol of Ben-Or et al which involves several layers of subprotocols. A central component of our AMPC protocol is a new and simple protocol for verifiable asynchronous complete secret-sharing (ACSS), which is of independent interest. -- As a side result, we give the security proof for our AMPC protocol in the standard universal composability (UC) framework of Canetti (FOCS 2001, JACM 2020), which is now the defacto standard for proving the security of cryptographic protocols. This is unlike the protocol of Ben-Or et al, which was missing the formal security proofs
    • 

    corecore