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ABSTRACT

Wallrabenstein, John Ross Ph.D., Purdue University, December 2014. Rational Mul-
tiparty Computation. Major Professor: Chris Clifton.

The field of rational cryptography considers the design of cryptographic protocols

in the presence of rational agents seeking to maximize local utility functions. This

departs from the standard secure multiparty computation setting, where players are

assumed to be either honest or malicious.

We detail the construction of both a two-party and a multiparty game theoretic

framework for constructing rational cryptographic protocols. Our framework spec-

ifies the utility function assumptions necessary to realize the privacy, correctness,

and fairness guarantees for protocols. We demonstrate that our framework correctly

models cryptographic protocols, such as rational secret sharing, where existing work

considers equilibrium concepts that yield unreasonable equilibria.

Similarly, we demonstrate that cryptography may be applied to the game theoretic

domain, constructing an auction market not realizable in the original formulation.

Additionally, we demonstrate that modeling players as rational agents allows us to

design a protocol that destabilizes coalitions. Thus, we establish a mutual benefit from

combining the two fields, while demonstrating the applicability of our framework to

real-world market environments.

We also give an application of game theory to adversarial interactions where cryp-

tography is not necessary. Specifically, we consider adversarial machine learning,

where the adversary is rational and reacts to the presence of a data miner. We give

a general extension to classification algorithms that returns greater expected utility

for the data miner than existing classification methods.
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1 INTRODUCTION

Rational cryptography is the study of designing cryptographic primitives and proto-

cols in the presence of rational players. By modeling all players as rational agents

acting to maximize a local utility function, the security model more accurately cap-

tures how agents behave in real world settings. This departs from the standard model,

where players are modeled as either semi-honest or arbitrarily malicious. The field of

rational cryptography integrates results from the game theoretic literature into the

security analysis of cryptographic primitives and protocols.

The standard model consists of two polar frameworks, each considering how to

model the subset of players that act in an adversarial manner. The first considers

semi-honest behavior, where adversaries are bound to follow the protocol specification,

yet may attempt to learn additional information from the protocol transcript. The

second considers malicious behavior, where adversaries may deviate arbitrarily from

the protocol specification. The semi-honest model relies on the strong assumption

that adversarial players will always follow the protocol specification, as this yields

more efficient protocol constructions. The malicious model makes no assumptions

about adversarial behavior beyond what is possible in an adversary’s complexity

class, but does so through increased computational cost to the protocol.

Rational cryptography provides an intermediary framework between the two poles

of the standard model. First, the assumption that players will follow the protocol

specification is removed. Second, the assumption that players select actions to maxi-

mize a utility function is added. Removing the first assumption admits more powerful

adversaries than the semi-honest model, while the addition of the second assumption

bounds adversaries to be strictly weaker than those considered in the malicious model.

Acting together, the two assumptions are designed to admit realistic adversarial ac-
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tions (those that benefit a player) while eliminating those that are unrealistic (those

that do not).

A final departure from the standard model is in the adversarial classification of

players. Both the semi-honest and malicious models divide players into an honest

and adversarial class. Protocol robustness is defined with respect to the proportion

of adversarial to honest players the protocol will tolerate. Rational cryptography

considers only a single class of players: rational agents. That is, all players may act

in an adversarial manner if doing so is a utility-maximizing strategy. This modeling

choice facilitates security proofs for protocols when all players may act adversarially;

a statement even the malicious model is unable to capture.

1.1 Contributions

We first present a game theoretic solution to the problem of adversarial machine

learning, which demonstrates the utility of a game theoretic approach in an adver-

sarial setting. We then demonstrate the utility of applying cryptographic primitives

to a classic game theoretic problem, establishing the synergy between the two fields.

We then merge cryptography and game theory, presenting two frameworks for reason-

ing about the security and construction of cryptographic protocols where all players

are rational, rather than semi-honest or malicious. We first introduce the two-party

framework, and demonstrate the necessary and sufficient conditions for protocols

providing privacy, fairness and correctness in the presence of rational participants.

Finally, we extend the two-party framework to the multiparty setting where players

have access to point-to-point communication channels. We argue that our multi-

party framework provides a more realistic model for collusion than prior work, and

demonstrate that a broad class of non-trivial games are realizable under our model.
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1.1.1 Rationality Applied to Non-Cryptographic Domains

We demonstrate that the notion of rational adversaries may be effectively applied

to domains where cryptography is not necessary. Specifically, we consider the area of

adversarial machine learning, and model adversaries as rational agents. We demon-

strate that adjusting classifiers to the expected behavior of a rational adversary yields

more accurate classification rules that are robust against future adversaries. We use

this as evidence of the power a rational adversary model may bring to cryptographic

constructions.

1.1.2 Applying Cryptography to Game Theory

To illustrate how cryptography can be applied to problems in game theory, we

consider the Walrasian Auction Market [1]. In this setting, we consider a set of sellers

and buyers that wish to determine the equilibrium price for a good without executing

any trades. Typically, excess demand is revealed through trade, which determines

the equilibrium price of a good. However, the Walrasian Auction theory holds only

if no trade occurs prior to reaching equilibrium. We construct a secure protocol that

takes as arguments the buyers’ utility functions and the sellers’ initial quantities and

prices, and outputs the equilibrium price for all goods. No information about the

buyers’ utility functions or the sellers’ supplies and initial prices are revealed, and

the only information learned is the equilibrium prices and what can be deduced from

knowledge of the function and its output.

1.1.3 Rational Two-Party Computation Framework

We combine cryptography with game theory to present a rational two-party com-

putation framework. To reason about the security and construction of cryptographic

protocols from a game-theoretic perspective, we build a framework to support the

standard properties desirable in a cryptographic protocol: privacy, correctness, and
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fairness. This work illustrates how game theory can be applied to cryptography,

where all players are considered rational, rather than semi-honest or malicious. We

use this rational 2-party computation framework to construct protocols that satisfy

the privacy, correctness, and fairness properties under the assumption of rational

players.

1.1.4 Rational Multiparty Computation Framework

We extend the two-party framework to reason about the security of cryptographic

protocols in the presence of multiple rational agents. Our framework makes no as-

sumptions about the communication interfaces available to agents, which departs

from the strong restrictions imposed by prior work. As our framework only permits

those game specifications allowing point-to-point communication, our results are not

general. However, we demonstrate that a non-trivial class of games (including those

that restrict communication) have equivalent formulations that are admissible un-

der our framework, and have realizable protocol constructions. We argue that our

multiparty framework provides a more realistic model than prior work, as real world

players typically have access to point-to-point communication channels.

1.2 Thesis Statement

In this work, we argue that there exist equilibrium concepts from the game theo-

retic literature that accurately capture how rational multiparty computation partic-

ipants engage in cryptographic protocols. We propose a novel two-party framework

for rational cryptography, proving necessary and sufficient conditions for protocols

providing privacy, correctness, and fairness in the presence of rational participants.

We extend our two-party framework to the multiparty setting, where players have ac-

cess to point-to-point communication channels. We demonstrate that our framework

captures a large class of non-trivial games, which may be realized into equivalent
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protocol constructions. We then demonstrate how game theoretic and cryptographic

concepts may be applied to build solutions for existing problems in both fields.

1.3 Organization of Thesis

1.3.1 Cryptography Background

In Chapter 2, we describe the necessary cryptographic concepts for understanding

the material presented in the Thesis. We describe homomorphic encryption, which is

used to construct a privacy preserving protocol for the Walrasian Auction Market. We

review standard concepts from secure multiparty computation, which are necessary

to understand our rational two-party and multiparty frameworks.

1.3.2 Game Theory Background

In Chapter 3, we review the necessary concepts from the game theoretic literature.

These are necessary for the proofs of incentive compatibility in our construction of

the Walrasian Auction Market, as well as to understand the proofs of security for

both the two-party and multiparty frameworks.

1.3.3 Rationality Applied to Non-Cryptographic Domains

In Chapter 4, we present a general method for computing optimal operational

decisions in adversarial environments. We approach the problem from a machine

learning perspective, where a defender deploys a machine learning algorithm and

an adversary responds to the presence of the classifier. We consider the setting of

spam detection, where adversaries continuously adapt to the presence of classifiers.

The defender may only inspect a proper subset of all records generated, as manual

inspection is costly in email and network intrusion detection settings. We show that

a game theoretic approach, under the assumption of rational adversaries, yields a
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general solution for increasing classification accuracy and utility when inspection is

bounded.

1.3.4 Applying Cryptography to Game Theory

In Chapter 5, we present a cryptographic construction of the Walrasian Auction

Market. The protocol preserves the privacy of all participants, and is incentive com-

patible against coalitions of individuals not controlled by a third party. Here we

demonstrate that cryptography may be successfully applied to game theoretic prob-

lems.

1.3.5 Applying Game Theory to Cryptography

In Chapter 6, we present a framework for constructing cryptographic protocols

that provide privacy, correctness and fairness in the presence of rational adversaries.

We demonstrate that game theoretic concepts may be applied successfully to the

cryptography domain, allowing more efficient constructions of protocols to be built.

1.3.6 Realizing Rational Multiparty Protocols

In Chapter 7, we present the multiparty framework for constructing cryptographic

protocols in the presence of more than two rational agents. We examine the issue of

player collusion, which is critically affected by the communication resources available

to players. We demonstrate that our framework is able to properly model collusion

in real world protocols, and describe how ideal game specifications are translated into

realizable protocols.
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1.4 Summary

This work considers the intersection of cryptographic protocol design and game

theoretic principles. We first present an application of game theory to adversarial

domains to demonstrate the utility of the approach. Second, we present an applica-

tion of cryptography to a game theoretic problem to demonstrate synergy between

the two fields. We then present a two-party framework for rational cryptography,

combining game theoretic principles into the framework for cryptographic protocol

design. Finally, we build on the two-party framework and present a rational multi-

party framework, considering an arbitrary number of rational players in standard

communication models.
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2 CRYPTOGRAPHY BACKGROUND

In this chapter, we review the necessary cryptographic concepts for understanding

the two-party and multiparty frameworks presented in Chapters 6 and 7, as well as

the cryptographic protocol construction of the Walrasian Auction Market presented

in Chapter 5.

2.1 Secure Multiparty Computation

A Secure Multiparty Computation (SMPC) Protocol ⇡ is an interaction between

n � 2 mutually distrustful parties pi 2 P . Each party pi has a private input xi 2 ~x,

where ~x is drawn from some distribution D(~x). The goal of ⇡ is to compute some

functionality f(~x) 7! ~y, which may be probabilistic. For randomized functionalities,

a common random string r 2 {0, 1}⇤, unknown to any party, is included as an argu-

ment and we write f(~x, r) 7! ~y. Each party pi receives output yi at the conclusion of

the protocol. The transcript ⌧ of ⇡ contains all messages that were sent during the

protocol execution. The general problem was introduced by Yao [2], where two mil-

lionaires wish to learn which one is wealthier. In a later work, Yao demonstrated that

any function computable in polynomial time can be computed securely in polynomial

time [3]. The two-party case was generalized to the multiparty case by Goldreich et

al. [4].

Informally speaking, the desirable properties of a SMPC protocol include:

1. Correctness: Protocol ⇡ outputs f(~x) for all ~x in the domain of f .

2. Privacy: The transcript ⌧ of ⇡, and the output ~y reveal no additional infor-

mation beyond what can be deduced from the output ~y and knowledge of f .
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3. Fairness: f(~x) = yi is output by all parties pi,0in computing ⇡, or the prob-

ability of computing the correct output is at most negligibly different for the

malicious and honest parties.

2.1.1 Adversarial Players

The standard model consists of two polar frameworks for modeling adversarial

players, each of which classifies only a proper subset of the players as adversarial

[5]. The two frameworks are referred to as the semi-honest, or "honest-but-curious"

model, and the malicious model. In both models, the adversary is monolithic: a

single entity that corrupts and controls a subset of the players in the protocol. The

difference between the two models is the degree of power assumed of the adversary.

Semi-Honest Adversaries

In the semi-honest model, adversarial players are bound to follow the protocol

specification. However, a semi-honest adversary may attempt to learn additional

information by performing additional computation over the protocol transcript ⌧ in

order to learn more information. Security against semi-honest adversaries is the

weakest form of security considered in the standard model, however it yields the most

efficient protocol constructions.

Malicious Adversaries

Stronger adversaries, referred to as malicious adversaries, are allowed to devi-

ate arbitrarily from the protocol specification. Thus, protocol constructions secure

in this model require that players demonstrate each step of the protocol was per-

formed correctly. This requirement imposes a considerable burden on the protocol

construction, as demonstrating correctness is usually achieved through computation-
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ally expensive zero knowledge proofs [6]. However, security under the malicious model

is the strongest form of security considered in the standard model.

While there exists a deterministic compiler for converting protocols secure in the

semi-honest model to one secure in the malicious model [5], the resulting protocol

incurs a substantial computational overhead. As this limits the likelihood that the

protocol will be deployed in real world settings, the majority of protocols are con-

structed under the weaker but more efficient semi-honest model.

Rational Adversaries

Rational cryptography proposes an adversary model more powerful than the semi-

honest framework, yet less powerful in general1 than the malicious framework. The

core of the argument towards an intermediary model is centered around the following

two questions:

• Will adversarial players follow the protocol specification, even when doing so is

not in their best interest?

• Must adversarial players be prevented from choosing actions that are not in

their best interest?

Throughout the remainder of this thesis, we argue that the answer to both ques-

tions should be in the negative. By removing the assumption that adversarial players

will follow the protocol specification, we consider more powerful adversaries than the

semi-honest case. However, we consider weaker adversaries than those in the mali-

cious model, as we do not protect against actions that are not in the best interest

of the adversary (as defined by assumptions about the adversary’s goals, which is

expressed through a utility function [Chapter 3]).
1As we will demonstrate in this thesis, modeling players as rational agents yields protocol prop-
erties that are unachievable under even the malicious framework. For example, guaranteeing that
rational agents will choose to provide their true input to the protocol [Chapter 5], or will continue
participating in the protocol rather than aborting [Chapter 6].



11

A final departure of rational cryptography from the standard model concerns how

players are classified. In both the semi-honest and malicious frameworks from the

standard model, players are classified as either honest or adversarial. Neither model

provides security guarantees in the case where all players are classified as adversarial.

However, rational cryptography assumes that all players are rational agents, and will

deviate from the protocol specification if doing so is in their best interest. In this

sense, rational cryptography considers a stronger class of adversaries than either of

the traditional frameworks, as all players may act adversarially.

2.1.2 The Simulation Paradigm

The security of a SMPC protocol is demonstrated by showing an equivalence be-

tween an ideal and a real model of execution under explicit assumptions. In the

ideal model, each party pi sends xi to an incorruptible trusted third party (TTP) T .

The output of f(~x) is computed by T , who then distributes yi to pi. The standard

assumption limits the running time of all parties and adversaries to probabilistic poly-

nomial time (PPT), and security is demonstrated by showing that the ideal and real

distributions are computationally indistinguishable [5].

Definition 2.1.1 Let X and Y be probability ensembles. We say that X and Y

are computationally indistinguishable, written X
c⌘ Y , if for every non-uniform

probabilistic polynomial time distinguisher D there exists a negligible function ✏(·)
such that for all sufficiently large � 2 {0, 1}⇤:

|Pr[D(X) = 1]� Pr[D(Y ) = 1]|  ✏(�) (2.1)

Here, � is the security parameter of the protocol, given in unary as 1

�.

By demonstrating that the real view of the protocol is computationally indistin-

guishable from the ideal view, we guarantee that with only negligible probability PPT

adversaries gain more information than the protocol specifies.
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2.1.3 Secure Function Evaluation

We review Yao’s constant round secure function evaluation (SFE) method for

evaluating any polynomial-time function securely in the semi-honest model [3]. The

goal is to take a deterministic functionality f(x, y) and build a garbled circuit C that

implements f(x, y). For a complete treatment, see Lindell et al.’s proof of security [7].

The protocol occurs between a circuit generator and a circuit evaluator. The generator

constructs C implementing f(x, y), and the evaluator computes C by obtaining their

input values through a series of 1-out-of-2 oblivious transfer2.

To construct the garbled circuit, we will choose wire encodings k�
w drawn from

some distribution D, where k�
w is the encoding of � 2 {0, 1} for wire w. As all wire

encodings k�
w are drawn from the same distribution D, knowledge of k�

w does not

reveal whether � = 0 or � = 1. The mapping � 7! {0, 1} is known only to the

circuit generator. The wire encodings k�
w are used as keys to a symmetric encryption

algorithm, which decrypt to either the proper encoding for the next gate in the series,

or the final output value.

We give a construction of a garbled NAND gate, as any function can be computed

solely through a chain of NAND gates:

Table 2.1: Garbled NAND Gate

Input w
1

Input w
2

Output w
3

Garbled Computation Table
k0

1

k0

2

1 Ek0
1

(Ek0
2

(1))

k0

1

k1

2

1 Ek0
1

(Ek1
2

(1))

k1

1

k0

2

1 Ek1
1

(Ek0
2

(1))

k1

1

k1

2

0 Ek1
1

(Ek1
2

(0))

When gates are chained together, the output wire wi contains k�
i , which is the

input encoding for the next gate. As the evaluator does not know the proper encoding

for its value � 2 {0, 1} for wire wi, it must ask the generator for k�
i . Clearly this

will reveal the evaluator’s input to the generator, which defeats the purpose of the
2See Rabin’s original protocol for realizing a 1-out-of-2 oblivious transfer [8].
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construction. Thus, a 1-out-of-2 oblivious transfer is used, where the evaluator learns

exactly one of {k0

i , k
1

i } and the generator does not learn which encoding was requested.

The general SFE construction with n-ary gates yielding m outputs has complex-

ity 2

nm. Although fast constructions exist for the two-party case [9], the existing

multiparty implementations (e.g., FairPlayMP [10]) are not practical for large n.

2.2 Homomorphic Encryption

In general, a cryptosystem supports the encryption Ek(·) and decryption Dk(·)
operations such that Dk(Ek(x)) = x. A homomorphic encryption system has an

additional property:

Ek(x) · Ek(y) = Ek(x� y) (2.2)

where � is a binary operator, such as addition or multiplication. By the definition

of multiplication, we can observe that the following property also holds:

Ek(x)
c
= Ek(x · c) (2.3)

In this thesis, we consider Paillier’s cryptosystem [11], where the homomorphic

operation � is additive.
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3 GAME THEORY BACKGROUND

In this chapter, we review the necessary game theoretic concepts required for the

proofs of security for the two-party and multiparty frameworks presented in Chapters

6 and 7, and the incentive compatibility argument for the Walrasian Auction Market

presented in Chapter 5. Katz gives an excellent summary of basic game theory notions

and their applications to cryptography [12].

3.1 Equilibrium Concepts

We now review the equilibrium concepts and game settings considered by existing

work. Our goal is to demonstrate the shortcomings of equilibrium concepts considered

by existing work, and to motivate our choice of perfect Bayesian equilibrium as the

solution concept for our framework.

3.1.1 Normal Form Games

We begin by introducing normal form, or strategic, games. Normal form represen-

tation of games is ideal for modeling simultaneous interaction, rather than sequential

moves. We review the formal definition from Osborne [13]:

Definition 3.1.1 A normal form game � consists of:

1. A finite set N of players.

2. A nonempty set Ai of actions available for each player i 2 N .

3. A preference relation -i on A = ⇥j2NAj for each player i.
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Frequently, the preference relation -i is represented by a utility function µi : A!
R, such that µi(a) � µi(b) when b -i a. The normal form game is then denoted by

� = hN, (Ai), (µi)i.
Normal form games are well-suited to modeling one-shot protocols where players

move simultaneously1. In a computational setting, this is equivalent to assuming the

existence of a broadcast channel. However, it is desirable to remove the assumption of

simultaneous moves (and, thus, the assumption of a broadcast channel) so that players

may move sequentially. We will return to this goal when we consider extensive-form

dynamic games.

Nash Equilibrium

We first review the standard solution concept in game theory, the Nash equilib-

rium [14]. The definition does not account for players in a computational setting.

Frequently, a deterministic choice of an action ai 2 Ai will not yield a Nash equilib-

rium. Thus, we allow players to choose a strategy �i, a probability distribution over

Ai.

Definition 3.1.2 A Nash equilibrium of a normal form game � = hN, (Ai), (µi)i
is a strategy profile ~� such that for every player i 2 N :

µi(�i) � µi(�
0

i, ��i)8�0

i (3.1)

where �
�i

def

= (�j)j2N\{i}

Intuitively, no player i has an incentive to deviate from strategy �i given that

every other player j selects their equilibrium strategy �j. We now consider Nash

equilibria in the computational setting.
1Technically, the notion of simultaneity only requires that players commit to their strategies before
moving. However, this is still an assumption we would like to remove.
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Computational Nash Equilibrium

The computational Nash equilibrium is the most widely used solution concept for

rational cryptography [15–19]. The intuition is to account for strategies that, although

optimal, occur with only negligible probability. In a cryptographic setting, an optimal

strategy may be to break the underlying cryptosystem. However, for players bound

to PPT, this strategy succeeds with only negligible probability. Consequently, Nash

equilibrium has been refined into a computational variant that states players only

switch strategies if the gain is not negligible with respect to the security parameter

�. The original definition of a computational Nash equilibrium was given by Dodis

et al. [16]:

Definition 3.1.3 A computational Nash equilibrium of a two-party extensive-

form game � is an independent strategy profile (�⇤

1

, �⇤

2

), such that

1. both �⇤

1

, �⇤

2

are PPT computable.

2. for any other PPT computable strategies �0

1

, �0

2

, we have

µ
1

(�0

1

, �⇤

2

)  µ
1

(�⇤

1

, �⇤

2

) + negl(�) (3.2)

and

µ
2

(�⇤

1

, �0

2

)  µ
2

(�⇤

1

, �⇤

2

) + negl(�) (3.3)

Nash equilibria are well-suited to normal form games, where players move simul-

taneously and have full knowledge of the game state and payoffs. However, in the

computational setting we must consider extensive form dynamic games of imperfect

information, where players move sequentially and may be unaware of the game state

or the payoffs of other players. Nash equilibria are known to be difficult to compute,

and the problem is in PPAD [20,21].
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Strict Nash Equilibrium

A common refinement of Nash equilibria is to require the equilibrium to be strict,

where the optimal strategy yields strictly greater utility than the alternative strate-

gies. The computational variant of strict Nash equilibrium requires the introduction

of a non-negligible gain in utility. This is necessary, as the computational Nash equi-

librium assumes players will not switch strategies for a negligible gain, despite the

alternate strategy yielding more (although negligible) utility. For example, a player

bound to PPT succeeds in breaking a cryptographic primitive with at most negligi-

ble probability. Thus, the computational variant of the equilibrium concept assumes

rational players will not switch strategies for this negligible utility gain. We use the

definition of a strict computational Nash equilibrium from Fuchsbauer et al. [22].

Let k be the security parameter. The function ✏ : N ! R is negligible if for all

c > 0 there is an Nc > 0 such that ✏(k) < 1/kc for all k > Nc. Let ⇢i be the Turing

machine that implements strategy �i in the protocol ⇧. We write ⇢i 6⇡ ⇧ if ⇢i does

not yield equivalent play with respect to ⇧.

Definition 3.1.4 Protocol ⇧ induces a computational strict Nash equilibrium if

1. ⇧ induces a computational Nash equilibrium

2. For any PPT strategy �0

1

with �0

1

6⇡ ⇧, there is a c > 0 such that µ
1

(�
1

, �
2

) �
µ
1

(�0

1

, �
2

)+1/kc for infinitely many values of k (with an analogous requirement

for a deviating player P
2

).

Kol and Naor [17] argue that the requirement of a strict (i.e., unique) equilibrium is

problematic in the computational setting.

Iterated Deletion of Weakly Dominated Strategies

Refining the Nash equilibrium concept through the iterative deletion of weakly

dominated strategies has been proposed to select a strategy when multiple Nash
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equilibria exist [23–25]. The intuition is that if a given strategy �i always yields equal

or greater utility than a strategy �j, j 6= i, the strategy �j can be removed from

consideration. Stated more formally, we follow the definition given by Katz [24]:

Definition 3.1.5 Given a game � = ({Ai}, {µi}), we say that action ai 2 Ai is

weakly dominated with respect to A
�i(A�i

def

= ⇥j 6=iAj) if there exists a randomized

strategy �i 2 �(Ai) such that:

1. µi(�i, ~a
�i) � µi(ai, ~a

�i)8 ~a
�i 2 A

�i

2. 9 ~a
�i 2 A

�i such that µi(�i, ~a
�i) > µi(ai, ~a

�i)

Definition 3.1.6 Given a game � = ({Ai}, {µi}) and ˆA ✓ A, let DOMi(
ˆA) denote

the set of strategies in ˆAi that are weakly dominated with respect to ˆA
�i. For k � 1,

set Ak
i

def

= Ak�1

i \DOMi(Ak�1

). Set A1

i
def

= \kAk
i . A Nash equilibrium ~� of � survives

iterated deletion of weakly dominated strategies if �i 2 �(A1

i ) for all i.

The primary issue with using iterative deletion of weakly dominated strategies to

refine Nash equilibria is that the order of deletion crucially affects the result. That

is, different equilibria may result depending on the order in which strategies are

deleted [17,26].

Stability with respect to Trembles

Fuchsbauer et al. [22] extend their definition of computational Nash equilibrium

for the refinement of stability with respect to trembles. Informally, a tremble is the

unlikely event where a rational agent chooses a strategy �0

i rather than the optimal

strategy �i. By accounting for trembles, nodes in the game tree that are off the equi-

librium path may be dealt with more appropriately. Following the formal definition

by Fuchsbauer et al., we say that ⇢i is �-close to �i if ⇢i takes the following form:

with probability 1� � party i plays �i, while with probability � it follows an arbitrary

PPT strategy �0

i. Thus, i will play the optimal strategy �i, but may deviate and play

an arbitrary strategy �0

i with some small probability �.
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Definition 3.1.7 Protocol ⇧ induces a computational Nash equilibrium that is stable

with respect to trembles if

1. ⇧ induces a computational Nash equilibrium

2. There is a noticeable function � such that for any PPT strategy ⇢
2

that is �-close

to �
2

, and any PPT strategy ⇢
1

, there exists a PPT strategy �0

1

⇡ ⇧ such that

µ
1

(⇢
1

, ⇢
2

)  µ
1

(�0

1

, ⇢
2

) + negl(k) (with an analogous requirement for the case of

deviations by player P
2

)

A primary concern with the concept of resiliency to trembles is that there may be

multiple alternatives to the optimal strategy. How � is divided amongst these sub-

optimal strategies affects the final equilibrium. However, the notion of trembles can

accurately model the case where a player is able to break the underlying crypto-

graphic primitive. This is assumed to happen only with negligible probability, and is

considered off the equilibrium path as a non-credible threat.

Correlated Equilibrium

A strong case for the use of correlated equilibrium can be made from the fact that

a mediator is able to “recommend” a set of actions to the players. Thus, the action

set follows a joint probability distribution, where each player learns the conditional

distribution over the actions of other players. Correlated equilibria are commonly

used in signaling games, where the ideal equilibrium is induced by an external signal

available to all players. The standard example is the game of chicken, where a player

may choose from ai 2 {fast, slow}. The mediator may be a traffic light, which signals

a recommended strategy to all players. This equilibrium may be outside the convex

hull of (mixed) Nash equilibria, which yields greater expected utility for players.

By recommending actions to players, greater utility may be achieved when players

follow the mediator’s advice. Further, correlated equilibria are computationally less

expensive (in strategic games) to compute than general Nash equilibrium. That is,
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computing Nash equilibria is NP-Hard, while computing correlated equilibria can

be done in polynomial time by solving a linear program [27]. Correlated equilibria

were considered in a computational setting by Urbano et al. [28], and specifically

in the context of rational cryptography by Dodis et al. [16], Atallah et al. [29], and

Gradwohl et al. [30]. Our objection to correlated equilibria is that they are defined

only for strategic form games, rather than the more expressive extensive form games.

The extension of correlated equilibria to extensive form games was considered by von

Stengel et al. [31], but they demonstrated finding the optimal equilibria is NP-Hard.

We give the definition for a correlated equilibrium of Dodis et al. [16]:

Definition 3.1.8 A correlated equilibrium is a strategy profile s⇤ = s⇤(A
1

⇥ A
2

) =

(s⇤
1

, s⇤
2

), such that for any (a⇤
1

, a⇤
2

) in the support of s⇤, any a
1

2 A
1

and any a
2

2 A
2

,

we have µ
1

(a⇤
1

, s⇤
2

|a⇤
1

) � µ
1

(a
1

, s⇤
2

|a⇤
1

) and µ
2

(s⇤
1

, a⇤
2

|a⇤
2

) � µ
2

(s⇤
1

, a
2

|a⇤
2

).

Bayesian Nash Equilibrium

Bayesian Nash equilibria (BNE) consider uncertainty with respect to a player’s

type, chosen by the fictitious player Nature. Thus, the optimal strategy for a player

is conditioned on the probability of the other players’ types. Bayesian Nash equilib-

ria result in implausible equilibria in extensive form dynamic games as non-credible

threats are not accounted for. The rational secret sharing problem was considered

by Groce et al. [32] without assuming broadcast channels, using BNE as the solution

concept. As BNE requires players fix their strategies before the game, they are unable

to update their strategies based on information observed throughout the game.

Definition 3.1.9 A Bayesian game consists of:

1. A finite set N of players.

2. A finite set ⌦ of states.

3. A set Ai of actions available to player i.
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4. A finite set Ti of types for player i, and a function ⌧i : ⌦ ! Ti that assigns

types to players.

5. A probability measure pi on ⌦ for which pi(⌧
�1

i (ti)) > 08ti 2 Ti.

6. A preference relation -i on the set of probability measures over A ⇥ ⌦, where

A = ⇥j2NAj.

From this, we are able to define a Bayesian Nash equilibrium:

Definition 3.1.10 A Bayesian Nash equilibrium of a game

� = hN,⌦, (Ai), (Ti), (⌧i), (pi), (µi)i for player i is an action set ai 2 Ai such that:

E[µi(�i|��i, ti)] � E[µi(�
0

i|��i, ti)] (3.4)

where �i : Ti ! Ai is the strategy mapping type space to action space.

Bayesian Nash equilibria are sufficient for strategic games, but lack the notion of

sequential rationality necessary for application in extensive form games. We introduce

the refinement of Bayesian Nash equilibria, namely perfect Bayesian equilibria, in

Section 3.1.2.

3.1.2 Extensive Form Games

We now leave the setting of normal form games, and consider extensive form

dynamic games where players move sequentially. Extensive form games are defined

by Osborne et al. [13] as follows:

Definition 3.1.11 An extensive form game � consists of:

1. A finite set N of players.

2. A (finite) set of sequences H. The empty sequence ; is a member of H. We

let k denote the current decision node. If (ak)k=1,...,K 2 H and L < K then
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(ak)k=1,...,L 2 H. If an infinite sequence (ak)1k=1

satisfies (ak)k=1,...,L 2 H for

every positive integer L then (ak)1k=1

2 H. A history (ak)k=1,...,K 2 H is a

terminal history if it is infinite or if there is no aK+1 such that (ak)k=1,...,K+1

2
H. The set of actions available after the nonterminal history h is denoted

A(h) = {a : (h, a) 2 H} and the set of terminal histories is denoted Z. We let

Hk denote the history through round k.

3. A player function P that assigns to each nonterminal history (each member

of H \ Z) a member of N [ {Nature}. When P (h) = Nature, then Nature

determines the action taken after history h.

4. For each player i 2 N a partition Ii of {h 2 H : P (h) = i} with the property

that A(h) = A(h0

) whenever h and h0 are in the same member of the partition.

For Ii 2 Ii we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any

h 2 Ii. Thus, Ii is the information partition of player i, while the set Ii 2 Ii is

an information set of player i.

5. For each player i 2 N a preference relation -i on lotteries2 over Z that can be

represented as the expected value of a payoff function defined on Z.

Throughout, we replace the preference relation -i by a utility function µi : A! R,

such that µi(a) � µi(b) when b -i a.

Information

In an extensive-form game, the notion of an information set Ii in an information

partition Ii is used to describe the information available to player pi at round k.

If all players observe all moves by every other player, then the current node in the

game tree is known with probability 1 and all information sets are called singleton,

as they apply to one specific node in the tree. If some moves are unobserved, then
2Even if all actions are deterministic, moves by Nature can induce a probability distribution over
the set of terminal histories.
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players may only know they are in a set of possible game tree nodes. In this case,

the information set is non-singleton, as the information set applies to more than one

game tree node.

The degree of information available to a player in a game is characterized as perfect

vs. imperfect :

1. Games of perfect information reveal the moves made by all players, and contain

only singleton information sets; all players observe the actions of others.

2. Games of imperfect information have non-singleton information sets, where

players do not observe a non-empty subset of the moves by other players.

From a cryptographic perspective, it is often the case that players in the proto-

col are unaware of the actions of other parties. Thus, such protocols are games of

imperfect information3, and any equilibrium concept used to model cryptographic

protocols must address this uncertainty. As noted by Halpern et. al. [34], current

frameworks (including their own) must incorporate an equilibrium concept that in-

corporates a player’s beliefs about the computational abilities of other players. The

perfect Bayesian equilibrium seems well-suited for addressing the uncertainties about

the current game state, as well as the computational abilities of the other players,

which we discuss further in Section 6.4.

Cryptographic protocols usually consider players with some private information

that serves as their input to the protocol. The game theoretic literature views such

inputs as a random move by Nature that determines the player’s type:

Definition 3.1.12 Let ti denote the type of player pi, where T = T
1

⇥ · · · ⇥ Tn is

the type space. Nature makes an initial move by sampling the type space distribution

�(T ) and assigning a type to each player. Player pi’s utility function is now defined

as µi : (~s,~t), where ~s = {si}1in is the strategy profile and ~t = {ti}1in is the type

profile.
3The well-known Harsanyi transformation [33] allows any game of incomplete information to be
transformed into a game of complete and imperfect information by introducing an initial move by
Nature that assigns a type to each player.
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Sequential Equilibrium

Sequential equilibrium was considered by Gradwohl et al. [30], and to a more full

extent by Zhang et al. [35]. We use the definition of sequential equilibrium from

Osborne et al. [13]:

Definition 3.1.13 An assessment (�, µ) is a sequential equilibrium of an extensive

game � = hN,H, P, fc, (Ii), f(Ui)i, if it satisfies the following two conditions:

1. (�, µ) is sequentially rational: For every player i 2 N and every information

set Ii 2 Ii, there holds: Ui(�, µ|Ii) � Ui((��i, �0

i), µ|Ii) for every strategy �0

i

of player i, where (�
�i, �0

i) is a strategy profiles that all players stick to the

strategy � except that player i turns to the strategy �0

i, and Ui((��i, �0

i), µ|Ii)
denotes player i’s utility induced by this strategy profile and the belief system µ

conditional on Ii being reached.

2. (�, µ) is consistent: There exists a sequence ((�n, µn
))

1

n=1

of assessments that

converges to (�, µ) in Euclidian space and has the properties that each strategy

profile �n is completely mixed and that each belief system µn is derived from �n

using Bayes’ rule.

In the case of Zhang et al. [35], the authors consider extensive-form games with

simultaneous moves. Specifically, they assume the existence of a broadcast channel.

In this work, we make no such assumption and allow players to move sequentially.

Sequential equilibria were originally proposed by Kreps and Wilson [36], and are

a refinement of perfect Bayesian equilibria. However, the consistency requirement

requires any assessment where an action is assigned zero probability to approximate

an assessment where all actions have non-zero probability, and the definition has been

considered overly stringent [13].
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Perfect Bayesian Equilibrium

Formal definitions of perfect Bayesian equilibria (PBE) are usually not generaliz-

able to all extensive form games, and contain the vague requirement that beliefs be

updated according to Bayes’ rule “whenever possible”. Bonanno [37] gives a definition

of PBE that is applicable for general extensive form games, but we will use the def-

inition by Diaz et al. [38], as they go further by extending to general extensive form

games as well as clarifying the ambiguous “whenever possible” updating requirement.

We first require that, for player i 2 N , their assessment (�i, �i) consisting of a

strategy �i and a belief �i about the game state, be sequentially rational:

Definition 3.1.14 An assessment (�i, �i) is (computationally) sequentially ratio-

nal if, for every player i 2 N and every information set Ii 2 Ii, there holds:

µi(�i, �i|Ii) + ✏(�) � µi((��i, �
0

i), �i|Ii) (3.5)

for every strategy �0

i, a probability distribution over actions, of player i, where (�
�i, �0

i)

is a strategy profile where all players select strategy ~� except that player i selects

strategy �0

i, and µi((��i, �0

i), �i|Ii) denotes player i’s utility induced by this strategy

profile and the belief system �i, a probability distribution over game states, conditional

on Ii being reached. The term ✏(�) denotes a negligible utility gain with respect to

the security parameter �, and �i is an efficiently computable strategy for player i with

complexity C .

Next, we give the definition of a weak perfect Bayesian equilibrium, which we build

on to construct the final equilibrium concept that applies to general extensive form

games:

Definition 3.1.15 Let � be an extensive form game. An assessment (�, �) is a weak

perfect Bayesian equilibrium if it is sequentially rational and, on the path of �,

� is derived from � from Bayes’ rule.
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Building on the definition of a weak perfect Bayesian equilibrium, we reach the

definition of a C -simple perfect Bayesian equilibrium:

Definition 3.1.16 Let � be an extensive form game. An assessment (�, �) is a C -

simple perfect Bayesian equilibrium if, for each regular information set Iki , the

restriction of (�, �) to �Iki
(�, �) is sequentially rational and � is obtained by condi-

tional updating from � (i.e., the restriction of (�, �) to �Iki
(�, �) is a weak perfect

Bayesian equilibrium), where � is efficiently computable by an interactive Turing ma-

chine (ITM) with complexity C .

For a proper introduction to game theory, Katz [12] describes the current effort to

combine game theoretic and cryptographic concepts, while Osborne et al. [13], Nisan

et. al. [39], and Fudenberg et. al. [40] give a complete introduction to game theory.
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4 RATIONALITY APPLIED TO NON-CRYPTOGRAPHIC DOMAINS

Before applying game theory to a cryptographic setting, we first demonstrate the

utility of a game theoretic approach to adversarial settings outside of a cryptographic

context. Specifically, we consider adversarial machine learning, where a defender

deploys a machine learning algorithm against an active adversary, whose strategy

reacts to the presence of the algorithm. Adversarial machine learning covers a broad

set of real world scenarios. For example, both spam and fraud detection consider

adversaries that react adaptively to the presence of a machine learning algorithm.

In our setting we consider spam detection, where a rational adversary (spammer)

has full knowledge of a defender’s utility function and strategy. This choice is to give

the adversary the best possible advantage against the defender, and to demonstrate

that a solution exists yielding an advantage for the defender even in this extreme

case. We model the interaction as a Stackelberg game, where the defender moves first

by deploying the machine learning algorithm. We stress that Stackelberg games are

a subset of those games expressible under our frameworks presented in Chapters 6

and 7, and the simplifying assumption that the adversary has full knowledge of the

defender’s strategy is to consider the worst possible scenario.

4.1 Introduction

Classical supervised learning assumes that training data is representative of the

data expected to be observed in the future. This assumption is clearly violated when

an intelligent adversary actively tries to deceive the learner by generating instances

very different from those previously seen. The literature on adversarial machine learn-

ing aims to address this problem, but often assumes constraints that sophisticated

and determined adversaries need not abide by. We model the adversarial machine
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learning problem by considering an unconstrained, but utility-maximizing, adversary.

In addition, rather than modifying the learning algorithm to increase its robustness

to adversarial manipulation, we use an output of an arbitrary probabilistic classi-

fier (such as Naïve Bayes) in a linear optimization program that computes optimal

randomized operational decisions based on machine learning predictions, operational

constraints, and our adversarial model. Our approach is simpler than its predecessors,

highly scalable, and we experimentally demonstrate that it outperforms the state of

the art on several metrics.

4.2 Motivation

In a classical supervised learning setting one starts with a data set of instances gen-

erated according to some fixed distribution, and learns a function which (one hopes)

effectively evaluates new instances generated from the same distribution. While this

assumption is often reasonable, it is clearly violated in adversarial settings. For

example, if machine learning is used for network intrusion detection, an intelligent

adversary will try to avoid detection by deliberately changing behavior to appear

benign.

We study the problem of adversarial machine learning, which we view as a game

between a defender (learner), who uses past data to predict and respond to potential

threats, and a collection of attackers who aim to bypass defensive response to their

activities while achieving some malicious end. The issue of learning in adversarial

environments has been addressed from a variety of angles, ranging from robustness

to data corruption [41], to analysis of the problem of manipulating a learning algo-

rithm [42]. The perspective we take here is that the training data accurately reflects

current threats (i.e., has not been tampered with by an adversary), but the way we

discriminate between benign and malicious behavior will influence the adversary to

change its future actions. A classic example of this is spam detection, where it is

quite clear that spammers deliberately manipulate email templates that they use in
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order to circumvent filters. Indeed, spam detection has been the prime motivator for

the progress in adversarial machine learning, in large part because there is abundant

public email data on which algorithms can be evaluated. However, spam, while a

nuisance, is hardly the most pernicious of adversarial activities. Spear phishing, or

sending targeted emails to groups of individuals in a specific organization in order to

either exfiltrate information or introduce malware, is both more malicious than typi-

cal spam, and qualitatively different. Regular spam is untargeted, and it is, perhaps,

reasonable to posit an adversarial model in this context where the attacker (spam-

mer) manipulates the distribution of future instances in some relatively limited way

(a common assumption is that the spammer chooses a linear transformation) [43–46].

Such a model, however, is clearly too limited when an attacker deliberately targets

an organization: in this case, the attacker will go to great lengths to circumvent

detection systems, and as long as machine learning is not perfect (which it never

is), it is in all likelihood vulnerable. Additionally, while the adversary may well be

constrained, it is highly unlikely that it is constrained in precisely the way modeled;

indeed, it seems more reasonable that the attacker faces a cost-benefit tradeoff in a

given attack setting, rather than hard constraints.

There is another important feature of most of the literature on machine learn-

ing techniques aimed at adversarial settings, such as network anomaly and intrusion

detection. Almost universally, the predictions produced by the application of learn-

ing are conflated with operational decisions based on these predictions, even though

these are conceptually distinct [43–49]. This has important consequences. First, the

adversary does not respond to predictions per se, but to operational actions based on

these. For example, even if the prediction identified an input as malicious, as long as

this prediction is not actualized in operations, the adversary would have no reason to

change behavior. Second, learned predictions typically do not account for operational

costs and constraints (although the literature on cost-sensitive learning attempts to

do so to some degree [50]). For example, even if an input is identified as malicious, it

may not be worth the cost to act on it if the damage is minimal (say, if an input is a
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Windows virus and you have only Linux machines). Third, machine learning is best

suited for the task of prediction, and in that sense we should focus on trying to de-

velop the most predictive algorithm given the available data. Operational decisions,

on the other hand, are most meaningfully an outcome of an optimization problem

under uncertainty, and the adversary’s response is naturally captured in this context

(unless there is specific data about how an adversary may respond to operational

decisions, which there rarely is).

The main conceptual contribution of this work is to separate the problem of pre-

diction, for which machine learning is used, and the problem of computing optimal

operational decisions based on such predictions in the face of a sophisticated adver-

sary. To this end, we introduce a linear optimization problem in which the objective

is the defender’s expected utility, balancing the value of good traffic that is allowed

(e.g., non-malicious or non-spam email), and the cost due to missed malicious activ-

ity, as well as constraints on the fraction of all traffic that can be operationally acted

on. We assume that “acting” on a particular observed input (e.g., a suspicious email

or network packet) is inherently costly, representing, for example, deep packet inspec-

tion, or in-depth investigation by cyber security professionals prompted by an alert.

Throughout, we use the word inspect to mean any costly operational activity on a

suspected malicious input. Overall, we presume a two-stage process: first, a machine

learning tool is trained on historical data, and second, the linear program is solved to

compute an optimal operational policy, using the predictions produced by the learn-

ing algorithm. In our context, it is especially significant to use highly informative

learning methods, i.e., those which produce, for each input x, a probability that x

is malicious. As a direct consequence of our approach, operational decisions are in

general randomized, unless it is either too costly to inspect anything, or inspection is

cheap so that everything plausibly malicious is inspected. Thus, our approach can be

viewed as a principled instance of moving target (or dynamic) defense in the context

of intrusion detection, which is also where such randomized defensive methods may be

relatively easy to deploy. Finally, because our model amounts to solving a linear pro-
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gram, the approach we present is very simple, and highly scalable. Nevertheless, we

show experimentally that it outperforms current art in adversarial machine learning

on public spam data, as well as data generated using an artificial utility-maximizing

adversary.

4.3 Model

We consider the problem of adversarial binary classification over a space X of

inputs, where each input feature vector ~x 2 X can be categorized as benign or ma-

licious. The defender, D, starts with a data set of labeled instances, I, such that

I = {(~x
1

, y
1

), . . . , (~xm, ym)}. We assume to accurately represent the current distribu-

tion of input instances and corresponding categories.1 D then uses an algorithm of

choice, such as Naive Bayes, to obtain a probabilistic classifier p(~x) which assigns to

an arbitrary input vector a probability that it (or, rather, a producer of it) is mali-

cious. In traditional application of machine learning, adversarial or not, one would

then use a threshold, ✓, and classify an instance ~x as malicious if p(~x) � ✓, and

benign otherwise, with adversarial aspects of the problem folded into the algorithm

that derives the function p(·). It is on this point that our approach diverges from

current art. Specifically, we introduce a function q(~x, p(·)) 2 [0, 1] which prescribes a

possibly randomized operational decision (e.g., the probability of filtering an email or

manually investigating an observed network access pattern) for an instance ~x given a

prediction p(~x). Clearly, the threshold function typically used is a special case, but we

will productively consider alternative possibilities. To simplify notation, where p(·) is

clear from context, we use instead q(~x), keeping in mind its implicit dependence on

the prediction made by the learning algorithm.

We model the adversarial machine learning setting as a Stackelberg game be-

tween a defender and a population of attackers. In this game, the defender moves

first, choosing q(·). Next, the attackers learn q(·) (for example, through extensive
1The problem of adversarial tampering of such training data is outside the scope of our work, and
can be viewed as an extension of our setup.
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probing), and each attacker subsequently chooses an input vector ~x (e.g., a phishing

email) so as to maximize their expected return (a combination of bypassing defensive

countermeasures and achieving a desired outcome upon successfully penetrating the

defense, such as a high response rate to a phishing attack). Our assumption that the

operational policy q(·) is known to attackers reflects threats that have significant time

and/or resources to probe and respond to defensive measures, a feature characteristic

of advanced cyber criminals [51].

We view the data set I of labeled malware instances as representing revealed

preferences of a sample of attackers, that is, their preference for input vectors ~x

(if an attacker prefered another input ~x0, we assume that this attacker would have

chosen ~x0 instead of ~x). To appreciate this modeling choice, it is worth noting that

much variation in malware is due either to differences in perpetrators themselves,

or differences in their goals (even for the same attackers), and labeled data provides

information, albeit indirectly, about these differences. Therefore, in our framework

p(~x) takes on a dual-meaning: first, it is the probability that ~x reflects a malicious

action, and second, if malicious, ~x represents an attacker’s “type”, or ideal method of

attack. Insofar as we view an attack ~x as ideal for an attacker, it is just as natural

to posit that an attacker would prefer attack patterns that are close to ~x in feature

space to those distant from it. For example, a model in which an attacker would

minimize the number of feature values to alter in order to bypass defensive activities

has this characteristic, as do models which use a regularization term to reduce the

scale of attack manipulation of data [43,45,46,52,53].

Suppose that if an attack ~x, succeeds, the attacker gains V (~x), which is also the

value lost to the defender. On the other hand, if an attack is filtered or caught by the

defender, both receive 0. Finally, if the attacker with a preference for ~x chooses an

alternative attack vector ~x0, his utility from successfully bypassing defenses becomes

V (~x)Q(~x, ~x0

), where

Q(~x, ~x0

) = e��||~x�~x0
||, (4.1)
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with || · || a norm (we use Hamming distance, as our feature vector is binary), and

� corresponding to importance of being close to the preferred ~x. Observe that when

� = 0, the attacker is indifferent among attack vectors, and all that matters is success

at bypassing defensive action, while � !1 results in an attacker who does not react

to defensive action at all, either because it is too costly to change, or because this

attacker simply does not have the capability of doing so (e.g., someone who merely

reuses attack templates previously developed by others). The full utility function of

an attacker with type ~x for choosing another input ~x0 when the defense strategy is

q(·) is then

µ(~x, ~x0

; q) = V (~x)Q(~x, ~x0

)(1� q(~x0

)), (4.2)

since 1� q(·) is the probability that the attacker successfully bypasses the defensive

action.

While the above attacker model admits considerable generality, we assume that

attackers fall into two classes: adaptive, as described above, and static, corresponding

to the limiting case of � !1. Let vt(~x; q) be the value function of an attacker with

class (type) t and preference for ~x, when the defender chooses a policy q. vt(~x; q)

represents the maximum utility that the attacker with type t can achieve given q. For

a static attacker, the value function is

vS(~x; q) = V (~x)(1� q(~x)), (4.3)

that is, a static attacker always uses his preferred input ~x, and receives his corre-

sponding value for it whenever the defender (operator) does not take action upon

observing ~x. For an adaptive attacker, the value function is

vA(~x; q) = max

~x0
2X

µ(~x, ~x0

; q), (4.4)

that is, the maximum utility that the attacker obtains from using an arbitrary input

~x0 (that is, we assume that the adaptive attacker is unconstrained). Finally, let PA
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be the probability that an arbitrary malicious input was generated by an adaptive

adversary; the probability that the adversary was static is then PS = 1� PA.

Having described in some detail our model of the adversarial response to defensive

choice of q(·), we now turn to the objective of the defender. At the high level, a

natural goal for the defender is to maximize expected value of benign traffic that is

classified as benign, less the expected losses due to attacks that successfully bypass

the operator (i.e., incorrectly classified as benign). Presently, we show that a special

case of this is equivalent to maximizing accuracy or minimizing loss. To formalize,

we make two assumptions. First, we assume that the set of all possible instances

X is finite, and use ~q and ~p as vectors corresponding to q(~x) and p(~x) respectively,

using some fixed arbitrary ordering over X . This assumption is clearly unrealistic

(even if X is technically finite, it will typically be intractably large), but will help

with exposition below. We subsequently (in Section 4.4) describe how to apply our

approach in practice, when this assumption will not hold. Second, we assume that

the defender gains a positive value G(~x) from a benign input ~x only if it is not

inspected. In the case of email traffic, this is certainly sensible if our action is to filter

a suspected email. More generally, inspection can be a lengthy process, in which

case we can interpret G(~x) as the value of time lost if ~x is, in fact, benign, but is

carefully screened before it can have its beneficial impact. Formally, we suppose that

the defender maximizes U
D

(~q, ~p,X ), defined as

U
D

(~q, ~p,X ) =

X

~x2X

[(1 � q(~x))G(~x)(1� p(~x))�

p(~x)(PSvS(~x; q) + PAvA(~x; q))] . (4.5)
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To appreciate that this formal definition of the defender’s objective is sensible, let us

first rewrite it for a special case when V (~x) = G(~x) = 1 and PS = 1, reducing the

utility function to

X

~x2X

(1� q(~x))(1� p(~x))� p(~x)(1� q(~x)). (4.6)

Since p(x) is constant, this is equivalent to minimizing

X

~x2X

q(~x)(1� p(~x)) + p(~x)(1� q(~x)), (4.7)

or, for each ~x, the sum of probability that it is benign and misclassified as malicious,

and probability that it is malicious but misclassified as benign; which is to say, the

expected loss.

The final aspect of our model is a resource constraint on the defender. Sommer

and Paxson [48] identify the cost of false positives and the gap between the output of

machine learning algorithms and its use in operational decisions as two of the crucial

gaps that prevent widespread use of machine learning in network intrusion detection.

Our framework directly addresses the latter point, and we now turn focus to the

former. False positives are quite costly because following up on an alert is a very

expensive proposition, involving the use of a scarce resource, a security expert’s time

understanding the nature of the alert. In practice, it is simply not feasible to follow

up on every alert, and there is a need for a principled approach that accounts for

such budget constraints. An additional cost of false positives comes from the fact

that, depending on the nature of operational decision, it results in some loss of value,

either because a valuable email gets filtered, or because important communication

is delayed due to deeper inspection it needs to undergo. In fact, G(~x) in our model

already serves to quantify this loss of value. We handle the typically harder constraint

on defensive resources by introducing a budget constraint, where we ensure that our

solution inspects at most a fraction c of events, on average.
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4.4 Computing Optimal Operational Decisions

Now that we have described our model of adversarial machine learning, the nat-

ural next question is: how do we solve it? Since our objective and constraints are

linear (using the assumption that the attacker’s gains translate directly into defender’s

losses), we can formulate our optimization problem as the following linear program

(LP):

max

~q
U
D

(~q, ~p,X ) (4.8a)

s.t. : 0  q(~x)  1 8 ~x 2 X (4.8b)

vA(~x; q) � µ(~x, ~x0

; q) 8 ~x, ~x0 2 X (4.8c)

vS(~x; q) = V (~x)(1� q(~x)) 8 ~x 2 X (4.8d)
X

~x

q(~x)  c|X |. (4.8e)

Since the number of variables in this LP is linear in |X |, while the number of con-

straints is quadratic in this quantity, clearly we cannot hope to use this when the

space of all possible inputs is large (let alone infinite). Note, however, that we only

need to compute the decisions q(~x) for inputs ~x we actually see in reality. Therefore,

in practice we can batch observations into manageable sets ¯X ⇢ X , and solve this

optimization program using inputs restricted to ¯X .2

A natural sanity check that our formulation is reasonable is that the solution is

particularly intuitive when there is no budget constraint or adaptive adversary. We

now show that in this case, the policy q(~x) which uses a simple threshold on p(~x) (as

commonly done) is, in fact optimal.

2It may seem that this setup violates our assumption that the attacker observes q(~x). However,
our assumption amounts to an attacker observing many instances of solutions to this optimization
problem, allowing the attacker to infer q(~x) for an arbitrary input ~x under consideration. Thus, it
is still accurate to characterize an attacker as responding to the policy q(~x).
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Proposition 4.4.1 Suppose that PA = 0 and c = 1 (i.e., no budget constraint).

Then the optimal policy is

q(~x) =

8

>

<

>

:

1 if p(~x) � G(~x)
G(~x)+V (~x)

0 o.w.
(4.9)

Proof Since we consider only static adversaries and there is no budget constraint,

the objective becomes

max

~q

X

~x2X

[(1� q(~x))G(~x)(1� p(~x))� p(~x)vS(~x)] , (4.10)

and the only remaining constraint is that q(~x) 2 [0, 1] for all ~x. Since now the objective

function is entirely decoupled for each ~x, we can optimize each q(~x) in isolation

for each ~x 2 X . Rewriting, maximizing the objective for a given ~x is equivalent

to minimizing q(~x)[G(~x) � p(~x)(G(~x) + V (~x))]. Whenever the right multiplicand is

negative, the quantity is minimized when q(~x) = 1, and when it is positive, the

quantity is minimized when q(~x) = 0. Since p(~x) � G(~x)
G(~x)+V (~x)

implies that the right

multiplicand is negative (more accurately, non-positive), the result follows.

While traditional approaches threshold an odds ratio (or log-odds) rather than the

probability p(~x), the two are, in fact equivalent. To see this, let us consider the gener-

alized (cost-sensitive) threshold on odds ratio used by the Dalvi et al. [52] model. In

their notation, U
C

(+,+), U
C

(+,�), U
C

(�,+), and U
C

(�,�) denote the utility of the

defender (classifier) when he correctly identifies a malicious input, incorrectly iden-

tifies a benign input, incorrectly identifies a malicious input, and correctly identifies

a benign input, respectively. In our setting, we have U
C

(+,+) = 0 (i.e., no loss),

U
C

(+,�) = 0 (and capture the costs of false positives as operational constraints in-

stead), U
C

(�,+) = �V (~x), and U
C

(�,�) = G(~x) (note that we augment the utility
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functions to depend on input vector ~x). The odds-ratio test used by Dalvi et al.

therefore checks

p(~x)

1� p(~x)
� U

C

(�,�)� U
C

(+,�)
U
C

(+,+)� U
C

(�,+)

=

G(x)

V (x)
. (4.11)

and it is easy to verify that inequality 4.11 is equivalent to the threshold test in

Proposition 4.4.1.

Consider now a more general setting where PA = 0, but now with a budget

constraint. In this context, we now show that the optimal policy is to first set q(~x) = 0

for all ~x with p(~x) below the threshold described in Proposition 4.4.1, then rank the

remainder in descending order of p(~x), and assign q(~x) = 1 in this order until the

budget is exhausted.

Proposition 4.4.2 Suppose that PA = 0 and c|X | is an integer. Then the optimal

policy is to let q(~x) = 0 for all ~x with

p(~x) <
G(~x)

G(~x) + V (~x)
. (4.12)

Rank the remaining ~x in descending order of p(~x) and set q(~x) = 1 for the top c|X |
inputs, with q(~x) = 0 for the rest.

Proof The LP can be rewritten so as to minimize

X

~x

q(~x)[G(~x)� p(~x)(G(~x) + V (~x))] (4.13)

subject to the budget constraint. By the same argument as above, whenever p(~x) is

below the threshold, the optimal q(~x) = 0. Removing the corresponding ~x from the

objective, we obtain a special knapsack problem in which the above greedy solution

is optimal, since the coefficient on the budget constraint is 1.

In a nutshell, Proposition 4.4.2 suggests an intuitive policy that whenever the budget

constraint binds, we should simply inspect the highest priority items. Therefore, ran-
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domization becomes important only when there is an adversary actively responding

to our inspection efforts.

4.5 Experiments

Experimentally validating a scheme for adversarial machine learning is inherently

difficult using publicly available data, such as spam. The reason is that insofar as

this data captures evolution of spam, it is in response to the ecology of spam filters,

and, in addition, the precise nature of the actually deployed filters is not a part

of such public databases. In addition, spam is in itself a rather benign attack, as

compared to, say, a spear phish aimed at stealing intellectual property. The latter

is clearly much more targeted, much more costly to the organizations, and involves

far more sophisticated and adaptive adversaries. All of the previous attempts to

address machine learning in adversarial settings struggled with this problem, and

evaluation is typically either (a) nevertheless involving public spam data [43–46],

or (b) generating synthetic data according to their model of the adversary [46, 52].

We do both: evaluate our approach on actual public spam data (Section 4.5.2), and

using synthetically generated attacks (Section 4.5.3). There is a clear limitation of

using one’s own model for validation: it naturally favors the proposed approach if the

model is assumed to be an accurate description of attacker’s behavior. We address this

limitation by evaluating the robustness of our approach to errors in the adversarial

model it uses (Section 4.5.4).

4.5.1 Setup

In all our experiments we use the TREC spam corpora from 2005 � 2008. In

Section 4.5.2, we use this data as is to compare the performance of our approach

in a spam filtering task, compared to state-of-the-art alternatives. In Sections 4.5.3

and 4.5.4 we use this data only for training, and simulate adversarial behavior ac-

cording to our model (as done, for example, by Dalvi et al. [52]). Throughout, we
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performed 10-fold cross-validation and analyzed the results using the approach out-

lined by Demšar [54]. We compare our approach against using a classifier it is based

upon (i.e., p(~x)) directly using pairs of the form {C, E[OPT (C)]}, where C is the

classifier providing p(~x) for our model, and E[OPT (C)] denotes our approach using

C. We use Friedman’s test to compute the p-values, using N = 4 data sets and k = 2

classifiers, as we are only concerned with the performance of our approach with re-

spect to the corresponding classifier. We use the post-hoc Bonferroni test, which does

not alter ↵ as ↵/(k� 1) = ↵ when k = 2, as in all of our comparisons. As detailed by

Salzberg [55], the feature criteria were chosen to optimize the performance of Naïve

Bayes on the TREC 2005 spam corpus. Feature vectors were generated from the raw

emails, and the same criteria were used for each corpus. None of the algorithms have

been optimized or tuned on future data. In Section 4.5.2, we train on a fold of the

TREC 2005 data, evaluate the performance over the test fold for the TREC 2005

corpus, and test over the entire set of future corpora.

Our approach uses predictions p(~x) obtained using three existing classifiers: Naïve

Bayes (our non-adversarial baseline), and the adversarial classifiers developed by

Bruckner and Scheffer [45] and Dalvi [52], which are state-of-the-art alternatives.3

We denote the expected utility of our approach as E[OPT (·)], where the argument is

an existing classifier that provides p(~x). We solve the LP (Equations 4.8a-4.8e) using

CPLEX version 12.2.

Our optimization approach explicitly bounds the number of instances that can

be inspected. We consider two principled ways of imposing the same restriction on

existing classifiers:

1. Let ¯X be all ~x with p(~x) above a threshold from Proposition 4.4.1. Then set

q(~x) = 1 if | ¯X|  c|X |, while q(~x) = c otherwise. This policy is optimal when

there are only stationary attackers and p(~x) 2 {0, 1}. We use this as the default.

2. Rank the instances in descending order of p(~x), and set q(~x) = 1 for the first

c|X | of these (as long as p(~x) exceeds the threshold from Proposition 4.4.1).
3We use the variant of Bruckner and Scheffer’s classifier with the linear loss function.
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This policy is optimal when there are only stationary attackers, as we showed

in Proposition 4.4.2. We call this “Naïve Ranking”.

We used the ifile tool by Rennie [47] to select tokens for the feature vectors. Many

of the desirable tokens for the TREC 2005 corpus are specific to the company where

the emails were collected. Since our experiments evaluate performance on future

TREC data which includes emails collected from different sources, we selected a

subset of tokens that are environment invariant. Specifically, we restricted attention

to the 14 tokens shown in Figure 4.1, and created a binary feature for each that

indicates its presence in an email.

~x = { font, td, http, nbsp, span, color, content,

div, face, net, src, www, charset, strong }

Figure 4.1.: The Boolean Feature Vector Tokens

We compare the algorithms below using an empirical utility function, which we

normalize to facilitate comparison across different cost settings (this utility is a gener-

alization of accuracy that accounts for costs V (~x) and G(~x)). Specifically, given data

with true labels, y(~x), we can express total accuracy on training/test data, weighted

with the corresponding costs of false positives and false negatives, as

X

~x

(1� y(~x))(1� q(~x))G(x) +
X

~x

y(~x)q(~x)V (~x). (4.14)

In our experiments, we fix G(~x) = G, and V (~x) = V for all ~x. Let |XTN | denote the

number of true negatives, |XTP | be the number of true positives, |X�| = P

~x y(~x)(1�
q(~x)) be the expected number of false negatives, and |X+| = P

~x(1�y(~x))q(~x) be the

expected number of false positives. After dropping the terms that do not depend on

q(~x), we can rewrite Equation 4.14 as U
D

= w(|XTN |� |X+|)+ (|XTP |� |X�|), where

w =

G
V

(note that when w = 1, this measure becomes exactly the total expected
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accuracy achieved by q(~x)). In the reported results, we normalize this by the total

utility of a perfect classifier, obtaining the empirical normalized utility

˜U
D

= 1� w|X+|+ |X�|
w|XTN |+ |XTP | . (4.15)

4.5.2 Performance on Public Spam Data

Our first set of experiments is a direct comparison of the performance of our model

as compared to state-of-the-art alternatives described above evaluated on public spam

data. In this experiment, we use TREC 2005 data to train the classifiers, compute

the optimal q(~x) for our approach while using the other alternatives as prescribed,

and evaluate (by computing the expected normalized utility shown in Equation 4.15)

on TREC data for years 2005-2008. As in all past evaluations of adversarial machine

learning algorithms [43–46] we do not retrain the classifiers, since our intent is not

merely to demonstrate value on spam data, but to anticipate far more actively ad-

versarial environments in which attackers adapt to defense decisions quickly, and the

defender wishes to have success in anticipating adversarial response.

Our first set of results, shown in Figure 4.2, compares our optimization-based

approach to alternatives when V (~x) = G(~x) = 1 for all ~x and PA = 0.5 (this choice

was made somewhat arbitrarily and not optimized to data), under a variety of budget

constraints. Since our optimization can take as input an arbitrary p(~x), we compare

the results of using the alternative machine learning approaches as input. From

considering the four plots in Figure 4.2, each corresponding to a different budget

constraint, it is apparent that the relative advantage of our approach (using any of

the alternative p(~x) in the optimization problem) is pronounced (exhibiting 10-20%

improvement over baseline) when the budget is relatively tight. Additionally, as we

would intuitively expect, our approach performs better than alternatives as we move

further into the future (giving the spammers more time to react to countermeasures

from 2005). With a sufficiently generous budget constraint, it is also interesting to

observe the tradeoff one would expect: the accuracy of our approaches is inferior
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(a) (b)

(c) (d)

Figure 4.2.: Comparison of algorithms on TREC data, trained on year 2005, and
tested on years 2005-2008. Our approach is labeled as E[OPT (·)], where the param-
eter is the classifier that serves as our p(~x). We use the following parameters: � = 1,
V (x) = G(x) = 1, PA = 0.5. (a) c = 0.1; (b) c = 0.3; (c) c = 0.5; (d) c = 0.9.

to alternatives on training data, but the decisions are more robust to adversarial

manipulation embedded in future data.

In Figure 4.3, our second set of results demonstrate that even after retraining the

classifier on all years prior to and including the current year, we typically outperform

the alternatives.

In Figure 4.4, we consider a higher cost of malware relative to benign instances,

fixing G(x) = 1 and considering V (x) = 2 and 10. Perhaps the most surprising find-

ing in these plots is that here Naïve Bayes outperforms Dalvi et al. and Bruckner

and Scheffer in several instances, even though these are specifically tailored to ad-

versarial situations. Our approaches, however, perform consistently better than the

alternatives.

We performed a statistical comparison between our approach and a corresponding

classifier p(~x) on which it is based using Friedman’s test with the post-hoc Bon-
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(a) (b)

(c) (d)

Figure 4.3.: Comparison of algorithms on TREC data, trained on all years prior
to and including the test year. Our approach is labeled as E[OPT (·)], where the
parameter is the classifier that serves as our p(~x). We use the following parameters:
� = 1, V (x) = G(x) = 1, PA = 0.5. (a) c = 0.1; (b) c = 0.3; (c) c = 0.5; (d) c = 0.9.

ferroni correction [54]. For all classifier pairs of the form {C, E[OPT (C)]} with

C 2 {Naïve Bayes,Bruckner,Dalvi} and for c 2 {0.1, 0.3}, V (x) 2 {1, 2, 10}, our

approach is statistically better than the alternative at the ↵ = 0.05 confidence level.

4.5.3 Performance with an Optimizing Attacker

Evaluating performance on future TREC data as done above is fundamentally

limited since this data set represents spam, where adversaries generally do not target

a specific classifier or organization but a relatively large population of spam filters.

In contrast, our approach is tailored to highly sophisticated and targeted attacks.

The problem is that data of this nature is highly sensitive and not publicly available.

Indeed, the ideal, infeasible, experiment is to observe adversarial response to our

model as well as other alternatives and evaluate the approaches with respect to such
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(a) (b)

(c) (d)

Figure 4.4.: Comparison of algorithms on TREC data, trained on year 2005, and
tested on years 2005-2008. Our approach is labeled as E[OPT (·)], where the parame-
ter is the classifier that serves as our p(~x). We fix � = 1, G(x) = 1, PA = 0.5, and vary
V (x) and c. (a) V (x) = 2, c = 0.1; (b) V (x) = 10, c = 0.1; (c) V (x) = 2, c = 0.3; (d)
V (x) = 10, c = 0.3.

adversarial response. As the next best alternative which has become relatively stan-

dard [46,52], we complement the spam evaluation in Section 4.5.2 with an alternative

set of experiments aimed at modeling highly adaptive adversaries who maximize their

expected utility in response to operational decisions q(~x). Specifically, we assume that

a machine learning algorithm provides an accurate assessment of current or near-term

threats, p(~x), and that all of the attackers are adaptive (i.e., that PA = 1). Moreover,

we assume that the learner/defender has correct knowledge of these parameters, as

well as the parameter of the adaptive attacker’s objective function, � (we relax this

assumption in Section 4.5.4). Finally, we let V (x) = G(x) = 1 for all ~x. For each

year Y in the TREC data set (e.g., Y = 2005), we perform 10-fold cross-validation.

However, rather than computing the utility directly using the test fold, we compute

the expected utility, assuming the adaptive attacker described in Section 4.3. Equiv-
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alently, we can think of this as the following exercise: for each ~x in the test fold,

we assign it a benign label with probability 1 � p(~x), assign a malicious label with

probability p(~x)PS, and with probability p(~x)PA generate a new malicious input ~x0

that maximizes the attacker’s expected utility given q(~x) computed by our algorithm.

In the first set of experiments, we choose p(~x) as generated by each alternative

learning model that we consider (i.e., Naïve Bayes, Dalvi et al., and Bruckner and

Scheffer). Figure 4.5 shows the results comparing the direct use of the three classifiers,

and as a part of our optimization program, when B = c|X | with c = 0.1 and c = 0.3.

This figure exhibits several findings. First, all three alternatives, including the two

Figure 4.5.: The expected utilities, assuming PA = 1 and that our attacker model is
correct; top: c = 0.1; bottom: c = 0.3.

state-of-the-art approaches to adversarial classification, are exploitable by a sophis-

ticated adversary. By comparison, all three of our optimization-based counterparts

are more robust and beat their respective classifiers in paired comparisons. Second,

the classifier of Dalvi et al. is in all cases far more robust to adversarial manipulation

than the one derived from Bruckner and Scheffer. Finally, we did not display the
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results of using Naïve Ranking here, as it performs far worse; clearly, randomization

is crucial when facing a sophisticated adversary.

In another set of experiments, we use Naïve Bayes as p(~x), and evaluate the

quality of Dalvi et al., Bruckner and Scheffer, and our optimized approach (still

using a synthetic attacker). Figure 4.6 shows the results. As in the previous set of

Figure 4.6.: The expected utilities, assuming PA = 1 and that our attacker model is
correct, where p(x) is provided by Naïve Bayes; top: c = 0.1; bottom: c = 0.3.

experiments, our model outperforms all of the alternatives. Surprisingly, however,

Dalvi et al. and Bruckner and Scheffer do not improve much upon the baseline Naïve

Bayes in this setting, and in some cases are even slightly worse.

In our final set of experiments in this section, we consider the impact of varying

V (x). The results are shown in Figure 4.7. Again, our model consistently outperforms

alternatives in paired comparisons, at times by a considerable margin (up to 50%

improvement). In all experiments in this section, we verified that our approach is

statistically better than alternatives at the ↵ = 0.05 confidence level.
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Figure 4.7.: The expected utilities, assuming PA = 1 and that our attacker model is
correct. Top: V (x) = 2; bottom: V (x) = 10. c = 0.3.

4.5.4 Robustness to Modeling Errors

A clear limitation of our evaluation in Section 4.5.3 is that the comparison which

simulates attacker behavior according to our modeling assumptions unduly favors our

approach. In this section, we relax this restriction in two ways: first, we introduce

a significant error into the attacker model used in the LP that our approach solves,

and evaluate by simulating attacker’s response according to the “correct” model; and

second, we solve the LP as before, but simulate the attacker’s response according to

an entirely different utility model. These experiments evaluate the sensitivity of our

approach to parameter selection and model correctness. Below, we observe that our

model is highly robust to both of these manipulations.

In our first set of robustness tests, we introduce an error ⌘ 2 [�1, 1] into the

estimate of PA and the parameter of the adversarial objective function �. Specifically,

given the true value of a parameter �T
= {PA, �}, we add the error as � = �T

+⌘. We
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train our optimization problem using the erroneous parameter values, and evaluate

the results by simulating attacker’s response using the correct parameters.

Figure 4.8 displays the expected utility of the algorithms, using the error ⌘ = 0.3

which changes the true parameters P ⇤

A = 1, �⇤ = 1 to erroneous PA = 0.7, � = 0.7

estimates. While our approach is certainly harmed by the inaccuracy in the parameter

Figure 4.8.: The expected utilities, assuming PA = 1 and that our attacker model is
correct, but allowing for errors in parameter estimates; top: c = 0.1; bottom: c = 0.3.

estimates, it is surprisingly robust to it, and we still outperform the state-of-the-art

alternatives even in this rather unfavorable context. Next we consider the expected

defender’s utility when p(x) is determined by Naïve Bayes, and q(x) is determined by

the classifier, and introduce the error of ⌘ = 0.3 into our estimates of PA, � as before.

The results, shown in Figure 4.9, again demonstrate that our model is relatively

robust to parametric errors, and still outperforms the competition.

In the next set of experiments, presented in Figure 4.10, we vary V (x) to consider

its effect on the defender’s utility in the context of modeling errors (⌘ = 0.3). Yet

again, despite the errors, our model outperforms alternative approaches.
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Figure 4.9.: The expected utilities, assuming PA = 1, that our attacker model is
correct, but allowing for errors in parameter estimates, and p(x) is provided by Naïve
Bayes; top: c = 0.1; bottom: c = 0.3.

Figure 4.10.: The expected utilities, assuming PA = 1 and that our attacker model
is correct, but allowing for errors in parameter estimates. Top: V (x) = 2; bottom:
V (x) = 10. c = 0.3.
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In the final set of experiments in this section, we verify robustness of our very

model of the adversary’s utility. Arguably the most fundamental component of our

model is exponential decay of the adversary’s utility for using any but the most

preferred input ~x. To check robustness to this construction, we solve our model (the

LP) as before, but evaluate the solutions q(~x) by simulating an adversary whose utility

actually decays polynomially, i.e.,

Qpoly(~x, ~x0

) =

1

1 + �||~x� ~x0|| . (4.16)

The results are shown in Figure 4.11, and demonstrate that our model is quite robust

Figure 4.11.: The expected utilities, assuming PA = 1 and that our attacker util-
ity model is incorrect, and the actual utility decays for non-preferred input vectors
according to Equation 4.16; top: c = 0.1; bottom: c = 0.3.

even when the assumption about the attackers’ utility functions is fundamentally

incorrect, and handily outperforms the alternatives.

In all experiments in this section, we verified that our approach is statistically

better than the alternatives at the ↵ = 0.05 confidence level.
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4.6 Related Work

There have been a number of related methods that apply game theoretic reasoning

in the context of network security in general, as well as specifically to harden a

machine learning algorithm against adversarial manipulation [43–46, 52]. Dalvi et

al. [52] consider an adaptive utility-maximizing adversary who is unaware of the

data miner’s strategy and reacts to the presence of a baseline (i.e., not hardened)

classifier. The adversary’s utility function is defined with respect to the minimum

cost camouflage (MCC) of a given feature vector, which represents the least costly

modification that allows a true positive feature vector to be classified as benign. This

model of an adversary thus bears close similarity to ours. The defender therefore

designs a classifier that is a best response to such attacks. The authors evaluate their

algorithm by synthetically generating an adversarial response according to their model

using public spam corpus as “original” data (i.e., prior to adversarial response). We

perform a similar evaluation in a subset of our experiments. Bruckner and Scheffer [43,

45] consider building a classifier against future records generated by an adaptive

adversary. Similar to our approach, they formalize this interaction first as a one-shot

game [43], and in a later effort as a Stackelberg game in which the learner (defender)

moves first, choosing a classification algorithm, and an adversary optimally responds

to it by applying an optimal linear transformation to future data [45]. In both of

these efforts, the goal of the defender is to minimize loss, and the attacker’s goal is

to maximize defender’s loss, although the two players may weigh the loss differently

(and, thus, the game need not be zero-sum). The evaluation in this work consists

training on past spam records and testing on future records, just as we do in the first

set of experiments we report. In a similar vein, Liu and Chawla [44] and Colbaugh

and Glass [46] consider a constant-sum game between an adversary and a data miner,

where the adversary aims to maximize loss on test data incurred by the learner by

adding a fixed vector to every input, with a regularization term aimed to minimize the

norm of the manipulation vector. The regularization term in the adversary’s objective
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common to all of these captures, like our approach, that the adversary wishes to

minimally manipulate the data to achieve his goal. Lowd and Meek [53] study the

classifier manipulation problem in isolation, and using a model very similar to ours in

which an adversary strives to choose a single input vector ~x that is misclassified by the

learner (rather than, say, expected loss as in many other approaches described above),

but with the objective of minimizing weighted l
1

distance to the base instance ~xa (in

our terminology, the attacker’s preferred method of attack). In a more recent work,

Huang et al. [42] give a taxonomy of attacks against machine learning algorithms.

Biggio et al. [56] are among the first to consider adding randomness to a classifier in an

effort to harden it against adversarial manipulation, but only propose adding a small

amount of noise, rather than a computational framework for optimal randomization.

Colbaugh and Glass [46] propose a uniform randomization scheme among several

equally good classifiers, showing that this scheme is more robust to manipulation than

a solution to a zero-sum game between the learner and manipulator which is similar

in structure to the model of Liu and Chawla [44]. Using a somewhat different model,

Kantarcioglu et al. [49] consider a Stackelberg game in which the adversary moves first,

followed by the data miner. The authors give conditions under which an equilibrium

exists in this game, and present stochastic search methods for approximating it. A

number of related approaches exist that aim to make learning robust to specific data

manipulations. For example, Globerson et al. [41] use quadratic programming to

ensure robustness against feature deletion.

Game theory has been proposed for use in network security settings more broadly

[57–61], but without considering specifically the adversarial aspects in machine learn-

ing. Most of this work considers variations on the problem of a defender trying to

block attack paths, for example, by inspecting packets at a subset of nodes.
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4.7 Conclusion

We have presented a general approach for finding the optimal inspection policy

against both static and adaptive adversaries. We showed that in the special case when

an adversary is static and with no operational budget constraints, our model is equiv-

alent to traditional likelihood ratio approaches (equivalently, using a threshold on the

probability of malware/spam). Our experiments demonstrated that our model con-

sistently outperforms both a baseline, non-adversarial machine learning approach, as

well as several state-of-the-art adversarial classification alternatives. Overall, our ap-

proach demonstrates a clear advantage when inspection is costly, events have weighted

importance, and when there are sophisticated, adaptive attackers. From a practical

perspective, our approach is very simple, highly scalable (it involves solving a linear

program), and can use an arbitrary classifier as input (indeed, a better classifier would

improve the performance of our optimization method). Our model is, of course, a

severe simplification of reality, and in future work one could consider attackers that

strategically manipulate training data, and/or multi-stage games in which defender

and attackers move in sequence. Despite the apparent simplificity of our model, how-

ever, we demonstrate that it outperforms alternatives on actual data and, thus, is a

good starting point for future, more complex, modeling advances, which would need

to demonstrate sufficient added value to compensate for additional complexity.
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5 APPLYING CRYPTOGRAPHY TO GAME THEORY

After demonstrating the utility of a game theoretic approach to adversarial problems

in Chapter 4, we now demonstrate the utility of applying cryptography to solve a game

theoretic problem. We consider the theoretical Walrasian Auction Model [1], where

equilibrium is reached through a process called tâtonnement. The market presents

a paradoxical scenario where trade cannot occur until equilibrium is reached, yet it

is trade that determines excess demand. Secure multiparty computation is capable

of acting as a fictitious mediator, handling pseudo-trades between buyers and sellers

consistent with their private utility functions until equilibrium is reached. When the

protocol is finished, the final equilibrium price is revealed to all players, thus avoiding

the aforementioned conundrum.

After constructing a cryptographic protocol capable of realizing the Walrasian

Auction Market in practice, we demonstrate that the protocol is designed to destabi-

lize coalitions. As we will demonstrate through our multiparty framework in Chapter

7, applying game theory to cryptographic protocol design yields properties that can-

not be achieved under the standard model. Destabilizing player coalitions is one such

powerful property, which we demonstrate concretely in this chapter.

5.1 Introduction

Léon Walras’ theory of general equilibrium put forth the notion of tâtonnement

as a process by which equilibrium prices are determined [1]. Recently, Cole and Fleis-

cher provided tâtonnement algorithms for both the classic One-Time and Ongoing

Markets with guaranteed bounds for convergence to equilibrium prices. However, in

order to reach equilibrium, trade must occur outside of equilibrium prices, which vio-

lates the underlying Walrasian Auction model. We propose a cryptographic solution
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to this game theoretic problem, and demonstrate that a secure multiparty computa-

tion protocol for the One-Time Market allows buyers and sellers to jointly compute

equilibrium prices by simulating trade outside of equilibrium. This approach keeps

the utility functions of all parties private, revealing only the final equilibrium price.

Our approach has a real world application, as a similar market exists in the Tokyo

Commodity Exchange where a trusted third party is employed. We prove that the

protocol is inherently incentive compatible, such that no party has an incentive to use

a dishonest utility function. We demonstrate security under the standard semi-honest

model, as well as an extension to the stronger Accountable Computing framework.

5.2 Motivation

Open markets balance supply and demand by converging to a price where the

two are equal. For example, oil is a commodity where increasing supply becomes

progressively more expensive, and increasing price reduces demand. Absent other

disturbing factors, oil supply and demand would eventually stabilize. However, this

takes time, and in the meantime prices rise and fall, leading to unnecessary investment

in uneconomical production based on an expectation of high prices, or investment in

consumption based on expectation of low prices. Faster convergence or lower volatility

in prices can have significant benefits.

Economic models generally accepted as valid representations of real-world market

behavior tend to have underlying computationally tractable algorithms. It follows

naturally to propose that these algorithms could be evaluated by parties to arrive at

the result deemed to accurately reflect the outcome of a given market phenomenon.

The work of Cole and Fleischer studies the market equilibrium problem from an

algorithmic perspective, and they give tractable price update algorithms that do not

rely on global information [62].

The algorithms of Cole and Fleischer [62] follow the Walrasian Auction model:

prices are adjusted according to a tâtonnement process, where prices iteratively rise
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or fall in response to changes in demand [1]. In the Walrasian Auction model, trade

occurs only once equilibrium has been established. In real-world markets, it is trade

that dictates demand and, thus, how prices are adjusted to converge toward equilib-

rium. However, Cole and Fleischer’s algorithms allow trade outside of equilibrium.

As specified, the Walrasian Auction model is limited to the theoretical domain

unless a trusted third party is invoked to serve as a mediator between the buyers and

sellers. Not only must the mediator be trusted to faithfully represent the interests of

all parties involved, it must be trusted with substantial information about each party’s

private utility function. As a utility function defines a party’s preferences over goods

with respect to both quantity and price, it reveals valuable information that parties

would prefer to keep private. Further, there are no guarantees that the parties will

truthfully report their valuations of the good. This problem becomes particularly

pronounced when independent buyers collude to reduce the final equilibrium price.

The recent work of Dodis et al. [16] considered a similar game theoretic problem:

implementing the mediator for rational players to arrive at a correlated equilibrium.

In game theory, a correlated equilibrium is selected when a mediator recommends

a strategy to each player such that, given the recommended strategy, no player can

improve their utility1 by choosing a different strategy. Further, the payoff may exist

outside the convex hull of standard Nash equilibria, yielding more utility than when a

mediator is not present. Dodis et al. demonstrate that secure multiparty computation

(SMPC) can replace the mediator with a protocol among the players, removing the

necessity of a trusted third party. In this work, we use SMPC to find Walrasian

equilibria without invoking a mediator or allowing trade to occur prior to arriving at

a stable price.

Further, we are able to make strong claims of incentive compatibility. In the stan-

dard security model, a monolithic adversary A corrupts a subset of the participants.

In rational cryptography, each player acts solely in their own self-interest, and thus

have an associated local adversary controlling their deviations [63]. The move to lo-
1A utility function describes an agent’s preferences over outcomes, and can informally be considered
a mapping between events and agent happiness.
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cal adversaries has important consequences on the stability of coalitions for rational

players. Not even protocols secure in the malicious model cannot guarantee that a

malicious party will not manipulate its input to the protocol, as a monolithic ad-

versary may force the equilibrium price to be deflated through centralized control of

corrupted parties. We demonstrate that our protocols are resilient against this be-

havior in the presence of local, independent rational adversaries seeking to maximize

their utility.

5.3 Our Contribution

Drawing on recent work from both the cryptographic and game theoretic literature

[12, 15, 26, 30, 34, 64, 65], we propose a privacy preserving protocol that allows buyers

and sellers to arrive at an equilibrium price using the tâtonnement process without

trade occurring outside of equilibrium. This approach has the auxiliary benefit of

keeping the utility functions of all parties private; only the final equilibrium price is

revealed. Further, we show that our construction is incentive compatible: the strategy

of reporting truthful private valuations weakly dominates all other strategies for both

buyers and seller.

A protocol that arrives at the equilibrium price for a good is beneficial to both the

buyers and sellers involved. A participant’s utility function must be evaluated many

times throughout the tâtonnement process in order for appropriate price updates to

occur. This is a potential disincentive to engaging in the protocol, as the participant’s

utility function contains their preferences for a good, and many individual points from

their utility function are evaluated and publicly disclosed. A malicious agent could

use this information to alter their behavior for personal gain. SMPC allows two or

more mutually distrustful parties to engage in a collaborative protocol to compute

the result of a function securely [3,4]. Our approach allows the tâtonnement process

to be evaluated privately, revealing only the final equilibrium price.
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SMPC has had real-world use, very much in the scenario we suggest. Bogetoft et

al. [66] deploy a privacy preserving protocol to evaluate a double auction model for

Danish commodity trading. However, they assume that all parties behave honestly

in using the system, and do not explore the possibility that a malicious party could

manipulate the equilibrium price to its advantage. In fact, they state “we did not

explicitly implement any security against cheating bidders”, although they were only

discussing semi-honest vs. malicious behavior in the traditional sense. Further, the

authors surveyed the farmers’ views on the privacy of their utility functions, and

found that nearly all preferred that information to remain private.

We go well beyond this, exploring lying about the input to the protocol itself : a

behavior that even the malicious model does not prevent. Previous work has demon-

strated this idea, although the authors only consider a two-party protocol, and showed

incentive compatibility only for an approximation of the real-world problem [67]. We

show that this approach can be used to enable SMPC to address the full range of

malicious behavior in a real-world, multiparty problem.

As another example, the Tokyo Commodity Exchange uses the itayose mechanism,

similar to tâtonnement, to reach equilibrium. In fact, this existing market circumvents

the restriction of disallowed trade until equilibrium is reached by invoking a trusted

third party: an auctioneer that adjusts prices based on excess demand [68]. Our

approach requires no trusted third party, resulting in the minimum possible disclosure

of information regarding each party’s utility function. Thus, there is clear real-world

application and tangible benefit from our results, similar to those of Bogetoft et

al. [66].

Note that our model makes a stronger statement than that of a Bayes-Nash equi-

librium, where participants have an incentive to be truthful if and only if others are

acting truthfully as well. We show that acting honestly is the dominant strategy in

our protocol regardless of the actions of the other players. The work by Eaves et

al. [68] provides further evidence for our claims of incentive compatibility, based on
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the fact that agents engage in the protocol repeatedly. However, our results hold

without the assumption of repeated interaction.

To ensure parties deviating from the protocol will be caught, it is secure under the

accountable computing (AC) framework proposed by Jiang and Clifton [69]. Note that

we first show security under the standard semi-honest model, and then extend this

to the AC-framework. The AC-framework provides the ability to verify that a party

correctly followed the protocol; contractual penalties can then be used to ensure that

correctly following the protocol is incentive compatible. Typical semi-honest protocols

provide no such guarantee; a malicious party may be able to manipulate the protocol

to their benefit. Protocols secure under the malicious model (forcing participants to

correctly follow the protocol) typically have much greater computational cost. By

demonstrating security under the AC-framework, detected deviations are punishable

by other participants forcing the minmax utility2 on the deviating parties [16]. We

also use commitments to ensure that parties use their true utility function with the

protocol; this prevents parties from supplying one input to the protocol (e.g., a low

demand) to give an artificially beneficial price, then purchasing greater quantities at

the resulting price.

We show that the utility functions and actions of all agents remain private, with

the equilibrium price revealed to all agents at the conclusion of the protocol. The

knowledge gain is only the information that can be derived from the result of the

function, and knowledge of the function itself. This satisfies the standard definition

of semi-honest security in that the protocol emulates the existence of a trusted third

party, without actually requiring such an entity [5]. This property is ideal, as a

universally trusted third party rarely exists for a given set of parties. Our work

considers only the case of the oblivious One-Time Market setting. That is, we consider

the market where all parameters are assumed not to be global information. Rather,

agents compute the price updates based solely on local information.
2The minmax punishment approach forces the outcome yielding the minimum utility to the deviator,
while maximizing the utility of the other participants.
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We begin by defining the market problem and reviewing the oblivious One-Time

Market algorithm in Section 5.4. We review the cryptographic primitives used in

Section 5.5, and give a construction3 based on an additively homomorphic cryptosys-

tem in Section 5.6. Finally, we demonstrate that the resulting protocol is incentive

compatible in Section 5.7. All proofs are provided in Section 5.9.

5.4 The Market Problem

Our SMPC protocol computes the equilibrium for a single seller offering a single

good to a set of buyers, which we extend to the general definition of the problem

following the notation from Cole and Fleischer [62]. The market under consideration

contains a set of infinitely divisible goods G, where |G| = n, and a set of agents A,

where |A| = m. Agent l has quantity wil of good i at the start of the protocol and

has a corresponding utility function µl(x1l, . . . , xnl) that gives their preferences for

all goods i 2 G. Note that the initial allocation wil may consist solely of currency;

it is a measure of the agent’s wealth. We make the simplifying assumption that

µl(x1l, . . . , xnl) = ⌃

n
i=1

µ(xil); the utility of a basket of goods is the sum of the utility

of each individual good. Each good i has a collection of prices pi, 1  i  n. Each

agent l selects a basket with xil units of good i so that ul is a maximum and is

affordable given their initial allocation. That is:
Pn

i=1

xilpi 
Pm

i=1

wilpi. The prices

p = (p
1

, p
2

, . . . , pn) are in equilibrium if the demand for all goods i 2 G is bounded

by the supply for good i:
Pm

l=1

xil 
Pm

l=1

wil.

We define wi =

P

l wil to be the supply of good i, and xi =

P

l xil to be the

corresponding demand. We define zi = xi � wi to be the excess demand of good i.

At a given set of prices p, the wealth of agent l is vl(p) =
P

i wilpi. By definition, w

is from the market specification while v, x and z are computed with respect to the

vector of prices. The wealth of an agent l is computed directly from a given price
3Our protocol can also be implemented using frameworks for the GMW protocol [4], such as Fair-
PlayMP [10], VIFF [70] or SEPIA [71].
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vector p, whereas x and z are computed by agents maximizing their utility functions

under the constraints imposed by v.

The model put forth by Cole and Fleischer is based upon a series of iterative price

and demand updates. We omit discussion of the proofs of bounded convergence time

and refer the reader to their original work [62]. In each iteration r, the price of a good

i 2 Gr is updated by its price setter using knowledge of only pi, zi, and their history.

Here, a price setter is a virtual entity that governs the price adjustments. However,

the price adjustments are governed by changes in demand in the algorithms. After

the price setters have released the new prices pr, the buying agents compute the set

of goods that maximizes their utility under the constraint of their wealth given the

current prices, vl(p). We consider only the oblivious One-Time Market price update

rule, which is as follows:

pi  pi · (1 + 1

2

dlog

4

rie
·min{1, zi

wi

}) (5.1)

The current round r is bounded prior to the start of the protocol by fixing the

terminal round r⇤. At the conclusion of the protocol, we will have computed the

equilibrium price and demand, p⇤ and x⇤, respectively.

To construct a privacy preserving protocol, we show how buyers compute their

demand based on the current price pi, and how sellers compute the price update given

the demand xi from the buyers. In our privacy preserving protocol, the buyers com-

pute the update for each round locally to prevent the seller from learning intermediate

prices. Symmetrically, neither the price nor the demand is known to either the buyers

or seller until the conclusion of the protocol. Finally, we must account for the fact

that zi
wi

may be less than 1, which cannot be represented properly in the field Zn.

To handle this, prices are represented in integer units corresponding to the minimum

increment (e.g., cents). We use the division protocol � of Dahl et al. [72] to compute
zi
wi

, which we discuss further in Section 5.5.1. As the degree of Walrasian auction

utility functions is 1 with overwhelming probability [1], all buyers are modeled as
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having Cobb-Doublas4 utility functions. As noted by Cole and Fleischer, under these

conditions the price update rule converges in a single round [62], so r⇤  1.

Our work is certainly not the first to apply SMPC principles to economic and

game theory. Previous work has shown that SMPC removes potential disincentives

from bartering to auctions [73,74]. Additionally, recent work has shown the potential

of combining cryptography with game theoretic principles [12, 15, 26, 30, 34, 64, 65].

However, no attempt has been made to remedy the paradox of the Walrasian Auction

model using SMPC techniques. In this way, we not only remove disincentives from

engaging in the protocol, we allow the model to exist in reality. That is, our protocol

allows the participants to evaluate the iterative price update function on the basis of

the buyers’ demand without actually revealing the demand through trade or invoking

a trusted third party. Additionally, we show that our construction constitutes an

incentive compatible market with respect to both buyers and sellers.

We review the One-Time Market Oblivious tâtonnement algorithm proposed by

Cole and Fleischer [62]. The original algorithm is a protocol between a set of buyers

bl 2 B and a set of sellers sl 2 S. We assume that for each buyer bl 2 B they have an

associated utility function µbl(i), where i is the good offered for sale from S. Recall

that the seller S has knowledge of their supply of i, given by wi. The task of the set

of buyers B is to compute the excess demand for good i, given by zi = xi�wi, where

xi = ⌃lxil is the sum of the demand of all buyers bl 2 B. The original protocol by

Cole and Fleischer is given formally by Algorithm 1.

The algorithm fixes a price pi for the good, uses the utility functions of the buyers

to determine the excess demand xi at that price, and sets the price for the next

round. The key contribution of Cole and Fleischer is to prove that the given update

rule gives a guaranteed convergence rate. Beyond simply bounding the number of

required rounds, as Walrasian markets typically have Cobb-Douglas utility functions,

the algorithm converges in one round [62].
4That is, a utility function whose parameter is an exponential function of the quantity of a good
received.
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Algorithm 1 Model by Cole and Fleischer
for ri = 0; ri < r; + + ni do

for sl 2 S do

pi  pi +
1

2

dlog
4

riepi ·min{1, zi
wi
}

end for

for all bl 2 B do

xi  xi + µbl(pi)
end for

zi  xi � wi

end for

p⇤ = pi
x⇤

= xi

return (p⇤, x⇤

)
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5.5 Building Blocks

To build the privacy preserving protocol, we build on a collection of cryptographic

primitives.

We require an additively homomorphic public-key encryption scheme E , with the

additional property of semantic security [75]. Such a scheme was proposed by Paillier

[11]. We denote the encryption of some plaintext x with Bob’s public key as Eb(x),

and the decryption of some ciphertext c = Eb(x) as Db(c). We require that our

cryptosystem’s homomorphic property is additive, which means that the following

operations are supported:

Eb(x) · Eb(y) = Eb(x+ y), (Eb(x))
c ⌘ Eb(x)

c
= Eb(x · c) (5.2)

Here, c is an unencrypted plaintext constant. Note that we omit the enclosing paren-

theses and treat Eb(x) as a distinct term. The construction of the additively homo-

morphic encryption scheme allows mathematical operations over encrypted data to

be performed, and provides the foundation for our protocol.

5.5.1 Division Protocol �

The price update rule requires computing the quotient of the excess demand and

the supply, xi�wi
wi

. Dahl et al. give a protocol for securely computing integer division

under the Paillier cryptosystem without requiring a bit-decomposition [72]. For l-

bit values, the constant round protocol requires O(l) arithmetic operations in O(1)

rounds.

5.6 Protocol Construction

We consider a set of k buyers bl 2 B interacting with a single seller S of a good

i. The protocol ⇡ securely implements the functionality f(µ
1

, · · · , µk, pS) 7! hp⇤, x⇤i.
Here, µl is the utility function of buyer bl 2 B. The full Walrasian Market (composed
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of more than a single seller and good) is modeled by instantiating an instance of

Protocol 5.6.1 for each pair of seller and good (S, i), and the associated set of buyers.

Note that our protocol centers around specific utility functions known as Marshallian

or Walrasian demand functions. That is, the participant’s utility function is modeled

as a polynomial, and defines the quantity demanded for a single good over all possible

prices. Overwhelmingly, the degree of a Walrasian demand function will be one [1].

Thus, a buyer’s utility function µbi has the form µbi(pi) = cpi where the coefficient c

is a constant, satisfying the definition of a Cobb-Douglas utility function. The final

argument to the functionality is the initial price pi specified by the seller. A Paillier-

based algorithm for computing the Walrasian equilibrium is given by Protocol 5.6.1.

This protocol could also be implemented using a state-of-the-art framework for the

GMW protocol [4], such as FairPlayMP [10], VIFF [70] or SEPIA [71].We defer the

proof of security to Section 5.9.
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Buyers 1  l  k: All buyers issue commitments (e.g., Pedersen [76]) to their
private utility function coefficients. This is necessary for the
verification stage of the AC-Framework [69].

Seller S: Set pi as the Seller’s initial price for good i.
Set wi as the supply of good i.
Send ES(pi) to all buyers.

Buyer 1 : The first buyer computes the initial demand as ES(xi)  
µb

1

(ES(pi))§, where µb
1

is the initial buyer’s utility function.
The first buyer forwards ES(xi) to the next buyer, so that
they can update the demand xi based on their utility func-
tion.

Buyers 1 < l  k: Each buyer updates the demand at the current price pi
based on their utility function µbl by computing ES(xi)  
µbl(ES(pi))§.

Buyer k: The final buyer bk must perform additional updates before
sending the results of the current round to either buyer 1
(if r < r⇤) or the seller (if the terminal round r⇤ has been
reached).
The final buyer updates the excess demand zi by computing
ES(zi) ES(xi) · ES(wi)

�1.
The final buyer computes the price update coefficient yi ..

=

zi
wi

, the fraction of excess demand to supply, using the division
protocol of Dahl et al. [72]: yi  �(ES(zi), ES(wi)).
The final buyer updates the current round price pri to pr+1

i by
computing ES(p

r+1

i ) ES(pri ) · ES(yi).
If r = r⇤, where r⇤ is the final round, buyer bk sends
hES(pi), ES(xi)i to the seller. Otherwise, this tuple is for-
warded to buyer 1 and the next round begins.

Seller S: After receiving hES(pi), ES(xi)i in the final round, the seller
computes the equilibrium price p⇤  DS(ES(pi)) and the
final demand x⇤  DS(ES(xi)).
The seller forwards p⇤ to all of the buyers.

Protocol 5.6.1: Additively Homomorphic Encryption Algorithm for Tâtonnement

In the next section, we prove that if a player is unable to deviate from the pro-

tocol without being caught (e.g., a protocol secure in the AC-Framework), then the

dominant strategy is for parties to provide their true utility functions.
§Here, we evaluate µbl(ES(pi)) as ES(pi) · ES(c), where c is the buyer’s coefficient term in µbl .
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b1

b2

b3

bk

S
Initial Price pi
Supply wi

ES (pi )

(a) Seller S broadcasts the encrypted ini-

tial price ES(pi) to all buyers.

b1

b2

b3

bk

S
Initial Price pi
Supply wi

ES (xi )← µb1
(ES (pi )) = ES (pi )

ci

(b) The first buyer b

1

computes their ini-

tial demand based on their utility func-

tion.

b1

b2

b3

bk

S
Initial Price pi
Supply wi

ES (xi )

(c) The first buyer forwards the updated

demand to the next buyer.

b1

b2

b3

bk

S
Initial Price pi
Supply wi

ES (xi )← ES (xi ) ⋅µbℓ
(ES (pi ))

(d) Buyers b

2

, b

3

update the demand

based on their utility functions.

b1

b2

b3

bk

S
Initial Price pi
Supply wi

ES (zi )← ES (xi ) ⋅ES (wi )
−1

yi ←δ (ES (zi ),ES (wi )) =
zi
wi

ES (pi
r+1)← ES (pi

r ) ⋅ES (yi )

(e) The final buyer bk uses the demand

to calculate the final price, which is for-

warded to the seller for decryption.

b1

b2

b3

bk

S
Initial Price pi
Supply wi

DS (ES (pi ))

(f) The seller S distributes the final price

to all buyers.

Figure 5.1.: Illustrated Homomorphic Tâtonnement Protocol
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5.7 Incentive Compatibility

We claim that Protocol 5.6.1 is inherently incentive compatible with respect to

protocol inputs from the perspectives of both buyers and sellers. That is, each player

has no incentive to maliciously modify their actual input (utility function). We assume

that malicious buyers have the option to either inflate or deflate their demand for a

given price relative to their actual utility function. We show that while this can

influence the price, it works to their detriment. We demonstrate that a seller only

sets the initial price, and that their choice does not affect the final equilibrium price,

so deviating provides no utility gain.

5.7.1 Utility Function Assumptions

In order to simplify the game theoretic analysis of the protocol, we write µ+

to denote positive utility, µ� to denote negative utility, and µ0 to denote neutral

utility gain. We assume that the magnitude of preference for all µi are equal (i.e.,

µ+

+ µ�

= µ0). Similarly, we assume that µ✏ represents only a marginal utility gain.

That is, µ+ > µ✏ > µ0.

Additionally, we assume that (pi�p⇤i ) 2 {µ+, µ�, µ✏}, although this value depends

on how much the reported utility function µ⇤

l differs from an agent bl’s actual utility

function µl. Clearly there is an inverse relationship between how much an agent

can under-inflate µ⇤

l (which subsequently reduces the equilibrium price p⇤i ), and the

likelihood of a trade occurring between the agent and the seller. As the agent is

involved in the protocol, we assume that they prefer a trade occur. If not, they would

have abstained from the protocol entirely. Thus, it is natural to assume the agent’s

utility function assigns the same range to both of these preferences. This assumption

does not affect our analysis, and is solely to ease the exposition.



70

Definition 5.7.1 Let rl be the reward that a buyer bl gains by reporting µ⇤

l in lieu

of their actual utility function µl. Where p⇤i (resp. pi) is the resulting equilibrium

price when µ⇤

l (resp. µl) is reported, bl’s reward is given by:

rl =

8

>

>

>

>

<

>

>

>

>

:

(pi � p⇤i ) < 0 : µ⇤

l > µl

0 : µ⇤

l = µl

(pi � p⇤i ) > 0 : µ⇤

l < µl

(5.3)

We make the natural assumption that each buyer prefers some (possibly large)

quantity of the seller’s good to their initial allocation, otherwise they would not engage

in the protocol.

Definition 5.7.2 Define the utility gained through trade as µ⌧ :

µ⌧ =

8

>

<

>

:

µ+

⌧ : trade occurs

µ�

⌧ : trade does not occur
(5.4)

Similarly, a buyer offering a higher price has increased control over the quantity

of the good they can demand, subject to the seller’s supply wi. That is, the seller

prefers to sell to the set of buyers {bl|pli � pmi , l 6= m} offering the highest price. Thus,

a highest price buyer bm can command min(wi, wm) units of good i, where wi is the

seller’s supply and wm is the initial allocation of resources for buyer bm.

Definition 5.7.3 Define buyer bl’s utility gained from control over quantity received,

µq,l, as follows:

µq,l =

8

>

<

>

:

µ+

q,l : 8j, pi > pj, j 6= i

µ�

q,l : 8j, pi  pj, j 6= i
(5.5)

That is, bl receives µ+

q if bl is offering the highest price pi, and µ�

q otherwise.
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Definition 5.7.4 Let rl be the reward for buyer bl, let µ⌧,l be bl’s trade utility, and

let µq,l be bl’s quantity control utility. We define bl’s total reward ⇢l as follows:

⇢l = rl + µ⌧,l + µq,l (5.6)

Without loss of generality, consider a coalition of buyers with utility functions

satisfying the above constraints. Let al = {au, at, ao} denote bl’s action set, where

au denotes under-inflating, ao denotes over-inflating, and at denotes reporting the

buyer’s true utility function ul rather than a modified utility function u⇤

l .

We assume that a rational seller will agree to sell their entire allocation of goods

to the buyer whose utility function ub gives the highest valuation for the good, thus

maximizing their profit. Thus, for all buyers bk /2 {bl|pli � pmi , l 6= m}, we have that

µ⌧,k = µq,k = µ�. Note the following:

• A buyer playing au in the presence of a buyer playing {at, ao} does not have

quantity control

• A buyer playing au in the presence of a buyer playing {at, ao} does not receive

any goods

• A unique buyer playing {at, ao} in the presence of buyers playing only au has

quantity control

We begin by reviewing the formal definition for weakly dominated strategies as

given by Katz [12], where a player can never increase their utility by playing a weakly

dominated strategy.

Definition 5.7.5 Given a game � = ({Al}kl=1

, {ul}kl=1

), where A = A
1

⇥ · · · ⇥ Ak

is a set of actions, with a = (a
1

, . . . , ak) 2 A being a strategy and {µl} is a set of

utility functions, we say that action a0l 2 Al is weakly dominated by al 2 Al if
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µl(al) � µl(a0l). That is, player Pl never improves their payoff by playing a0l, but can

sometimes improve their payoff by playing al.

To show that our construction is incentive compatible, we iteratively delete weakly

dominated strategies to arrive at the stable Nash equilibrium [14]. The process of

iteratively deleting weakly dominated strategies is criticized because, in some cases,

the order of deletion affects the final result [26]. In this analysis, weakly dominated

strategies can be removed in an arbitrary order without affecting the result.

We present a simplified payoff matrix in Table 5.1. The strategy ao of over-

inflating the utility function is removed for clarity, as au, the strategy of under-

inflating, is a much more intuitive deviation for maximizing utility. However, we

formally demonstrate that ao is weakly dominated in lemma 5.7.1.

Table 5.1: Total Payoff Matrix

a0u a0t
au (µ+,µ+) (µ�,2µ+)
at (2µ+,µ�) (µ+,µ+)

Lemma 5.7.1 The strategy ao of reporting an over-inflated utility function u⇤

i is

weakly dominated by at.

Proof We show that the action of over-inflating the buyer’s true utility function

is weakly dominated by truthfully reporting the utility function, demonstrating that

ao is weakly dominated by at. Recall that buyer bl’s total reward is defined as ⇢l =

rl+µ⌧,l+µq,l. For convenience, we will parameterize ⇢l(·) with the action being played.

This notation is convenient for comparing the total payoff yielded from different

actions.

We begin by deriving the maximum utility that could be gained by playing ao,

the action of over-inflating the true utility function. As buyer bl is playing ao, we
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have that µ⇤

l > µl. From Equation 5.3, we have ⇢l(ao) = (pi � p⇤i ) + µ⌧,l + µq,l. As

(pi � p⇤i ) < 0, we write µ� for concreteness. Given that bl is over-inflating their

true utility function µl, they are more likely to effect a trade. Clearly the seller S

prefers the higher price p⇤i to bl’s true valuation, pi. By Equation 5.7.2, we have that

⇢l(ao) = µ�

+ µ+

⌧,l + µq,l. Similarly, by over-inflating their true utility function, bl is

more likely to have control over the quantity of the good they receive, as they are

offering a higher price. By Equation 5.7.3, we have that: ⇢l(ao) = µ�

+µ+

⌧,l+µ+

q,l = µ+.

Thus, we have that max(µl(ao)) = µ+. We now derive the maximum utility that

could be gained by playing at, where buyer bl reports the true utility function µl. By

Equation 5.3, we have that ⇢l(at) = µ0

+µ⌧,l+µq,l as pi = p⇤i so (pi�p⇤i ) = µ0. Buyer

bl maximizes their utility when a trade occurs, and they can control the quantity of

the good they receive. Following the same derivation that was used for ao, we have

from Equation 5.7.2 that ⇢l(at) = µ0

+ µ+

⌧,l + µq,l. Similarly, by Equation 5.7.3 we

have that ⇢l(at) = µ0

+ µ+

⌧,l + µ+

q,l = 2µ+. We have that max(µl(at)) = 2µ+, and it

follows that max(µl(at)) > max(µl(ao)). Thus, a buyer always does at least as well or

better by playing at, and we say that at weakly dominates strategy ao.

Lemma 5.7.2 The strategy au of reporting an under-inflated utility function u⇤

l is

weakly dominated by at.

Proof We demonstrate that the action au is weakly dominated by at when consid-

ering both individual buyers and members of a buyer coalition that collude to lower

the equilibrium price p⇤.

Consider an individual buyer bl that is not a member of a coalition. As bl reports

µ⇤

l , µ
⇤

l < µl, by Equation 5.3 we have that ⇢l(au) = (pi � p⇤i ) + µ⌧,l + µq,l. Again, as

(pi � p⇤i ) > 0, we assume (pi � p⇤i ) = µ+ for concreteness. Similarly, we assume that

under-inflating µl reduces the chances of bl effecting a trade with S, as bl is offering a

lower price. By Equation 5.7.2, we have that ⇢l(au) = µ+µ�

⌧,l+µq,l. Playing action au
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also reduces the chances of bl having control over the quantity of the good received,

if any is received at all. By Equation 5.7.3, we have that ⇢l(au) = µ+µ�

⌧,l + µ�

q,l = µ�.

Thus, max(µl(au)) = µ�, and it follows that max(µl(at)) > max(µl(au)). Thus, a

(non-coalition) buyer always does at least as well or better by playing at, and we say

that at weakly dominates strategy au.

We now consider a coalition of unique buyers under-reporting µl as µ⇤

l < µl,

colluding to decrease the resulting equilibrium price p⇤ of the good. That is, the

coalition is not controlled by a monolithic adversary as is common in the standard

security model: they are independent buyers in competition, modeled under the local

adversary framework of Canetti [63]. In the game theoretic literature, this is referred

to as the cartel problem. Note that the best response of any member of the coalition

is to report µ⇤

l + ✏ for any positive ✏. In doing so, they receive the goods at a price

p0 < p⇤ while the other coalition members receive no goods. Applying backward

induction, we demonstrate that the best response of all buyers in a coalition is to

report µl, as µ⇤

l + ✏ converges to their true utility function µl.

Suppose all coalition members agree to collude by reporting µ⇤

l < µl, and all

members play this strategy. For any buyer bl in the coalition, we have that µ⇤

l < µl

and by Equation 5.3 we have that ⇢l(au) = (pi � p⇤i ) + µ⌧,l + µq,l. As (pi � p⇤i ) > 0,

we set (pi � p⇤i ) = µ+ to denote a positive utility gain. As the coalition consists

of more than a single buyer, all members of the coalition are more likely to effect

a trade. From Equation 5.7.2, we have that ⇢l(au) = µ+

+ µ+

⌧,l + µq,l. However,

as all members of the coalition are offering the same price for the good, they have

no control over the quantity of the good they receive. By Equation 5.7.3, we have

that ⇢l(au) = µ+

+ µ+

⌧,l + µ�

q,l = µ+. Thus, max(µl(au)) = µ+ for all coalition

members. However, consider the case where a coalition member reports a utility

function µ0

l = µ⇤

l + ✏, ✏ > 0. That is, some bl in the coalition increases the price they
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are willing to pay for the good by any positive amount ✏. From Equation 5.3, we have

that

⇢l(au + ✏) = ((pi � (p⇤i + ✏)) + µ⌧,l + µq,l = µ(+)�✏
+ µ⌧,l + µq,l (5.7)

However, now bl is more likely to effect a trade, as p⇤i + ✏ > p⇤i . By Equation 5.7.2, we

have that ⇢l(au+ ✏) = µ(+)�✏
+µ+

⌧,l+µq,l. Similarly, bl has control over the quantity of

the good received as bl is offering ✏ more than the coalition members. From Equation

5.7.3, we have

⇢l(au + ✏) = µ(+)�✏
+ µ+

⌧,l + µ+

q,l > 2µ+ > max(µl(au)) (5.8)

Thus, max(µl(au + ✏)) > max(µl(au)), as µ(+)�✏
= µ+

+ µ�✏ > µ0. However, all

coalition members are aware of this fact. Applying backward induction, it is not

difficult to see that action au converges to at by increasing ✏ until µ⇤

l = µl, and that

at weakly dominates au.

Corollary 5.7.3 The strategy at of reporting the true utility function ul weakly dom-

inates {au, ao} for all buyers.

Proof A buyer’s action set is defined as al 2 {au, at, ao}. By lemma 5.7.1, we have

that ao is a weakly dominated strategy, and can be eliminated. By lemma 5.7.2, we

have that au is a weakly dominated strategy, and can be eliminated. Thus, reporting

the true utility function µl as denoted by action at is a stable Nash equilibrium.

Theorem 5.7.4 The strategy at of reporting the true utility function ul weakly dom-

inates {au, ao} for the seller.

Proof As noted in the original paper, the update protocol converges on the equi-

librium price p⇤ from any arbitrary initial price pi [62]. Given that the seller’s only
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influence on the equilibrium price is through setting the initial price pi, there is no

incentive to report some p0i 6= pi, as p⇤ is unaffected in doing so.

5.8 Semi-Honest Proof of Security

The proof of security under the semi-honest model is the first step in demon-

strating security under the AC-Framework. We formally prove that Algorithm 5.6.1

is secure under the standard semi-honest model in Section 5.9, when demonstrating

that the Basic Security condition holds for the AC-Framework.

5.9 Security under the AC-Framework

The Accountable Computing (AC) -framework [69] considers adversaries in the

gap between the semi-honest and malicious models. The AC-framework guarantees

that an honest party can catch malicious behavior (unlike Aumann’s covert model,

which requires that such behavior be caught); honest parties can choose not to verify

that behavior is correct (thus saving computation), verify if they do not trust the

results, or probabilistically verify sufficiently often to ensure incentives for correct

behavior. We now show that our protocol satisfies the conditions necessary under the

AC-framework. As part of this, we formally prove that the protocol is secure under

the semi-honest model (Theorem 5.9.1), as security under the standard semi-honest

model is a requirement for satisfying security under the AC-Framework.

The definition as given by Jiang and Clifton [69] is as follows:

Definition 5.9.1 (AC-protocol) An AC-protocol � must satisfy the following three

requirements:
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1. Basic Security: Without consideration of the verification process, � satisfies

the security requirements of a SSMC-protocol (a SMC-protocol secure under the

semi-honest model).

2. Basic Structure: The execution of � consists of two phases:

• Computation phase: Compute the prescribed functionality and store in-

formation needed for the verification process.

• Verification phase: An honest party (we name such a party as a prover

hereafter) can succeed in verifying an accountable behavior.

3. Sound Verification: � is sound providing that the verification phase cannot

be fabricated by a malicious party.

We now demonstrate that � satisfies all requirements of the AC-framework.

Theorem 5.9.1 Basic Security Given an adversary A’s private inputs I
A

and out-

put O
A

, A’s view of the protocol can be efficiently simulated.

Proof We follow the simulation proof of semi-honest security characterized by Gol-

dreich [5]. Consider the case where A is a buyer. With the exception of A’s private

input and the result of �, all messages are encrypted with the seller’s public key of an

additively homomorphic encryption scheme E . It follows naturally that a simulator

could generate and send a series of random elements in Z⇤

n2

to A. The encryption

scheme E is semantically secure, which implies that A is unable to distinguish the

random elements of Z⇤

n2

from true encryptions. Thus, A’s view of � is efficiently sim-

ulatable. Consider next the case where A is the seller. A sees only the final message

ES(pi), which is the output of the protocol. Thus, O
A

= ES(pi) can be efficiently

simulated by encrypting the final result pi with the seller’s public key (known to the

seller/simulator) to get ES(pi). Thus, � does not reveal any additional information

to A through the intermediary messages.
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Lemma 5.9.2 (Basic Structure: Computation) � stores sufficient information to

support the verification phase.

Proof In the case of the seller S, the initial price pinitial as well as all internal coin

tosses used for encryption are stored. In the case of a buyer, the committed (e.g.,

Pedersen’s scheme [76]) coefficients, all encrypted price updates, as well as all internal

coin tosses are stored.

Lemma 5.9.3 (Basic Structure: Verification) An honest party in � can succeed in

verifying an accountable behavior while revealing only that information in �.

Proof Let T
�

represent the entire protocol transcript. Consider the case where an

honest buyer bl wishes to demonstrate accountable behavior. In this case, all inter-

mediate prices pi are revealed. A verifier uses the internal coin tosses of bl to recon-

struct ES(µbl(pi)). For each committed coefficient cl, we reconstruct ES(µbl(pi)) 2 T
�

by computing ⇧

t
j=1

ES(cl)pi using the internal coin tosses of bl. The encryptions of

ES(µbl(pi)) will have identical representations in Z⇤

n2

, as they were generated with the

same randomness. Thus, the encrypted elements can be compared bitwise for equal-

ity. If the price updates of bl 2 T
�

match the reconstructed values, bl demonstrates

accountable behavior. Consider the case of the seller S. A seller needs to demon-

strate that the final decrypted price pr = DS(ES(pr)) in the final round is equal

to the reported final price p⇤r. Any verifier can compute a seller verification value

VS = ES(R2

· (R
1

� pr)) = (ES(pr) · ES(�R1

))

R
2 , where R

1

, R
2

are chosen uniformly

at random from Zn, and ask S to decrypt the value. If R
2

· (R
1

� pr) = R
2

· (R
1

� p⇤r),

the seller demonstrates accountable behavior. Each buyer signs ES(pr) to prevent a

dishonest buyer from recanting in order to falsely implicate an honest seller.
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Theorem 5.9.4 � satisfies the sound verification phase.

Proof Consider the case of a malicious buyer bm. If any of bm’s price updates were

not computed using the committed coefficients of bm’s utility function, the recon-

structed encrypted update will not match the update in T
�

. Further, there does not

exist a series of coin tosses that allow bm to represent an altered update ES(µ⇤

bm
(pi))

as the actual update ES(µbm(pi)) 2 T
�

, as this would prevent deterministic decryp-

tion. Thus, no malicious buyer bm can forge a legitimate verification. In the case of a

malicious seller Sm, the blinded value of pr prevents Sm from constructing a response

V 0

S 6= VS such that some p⇤r can be reported in lieu of the actual equilibrium price pr.

Theorem 5.9.5 Basic Structure (buyer) Let � represent Protocol 5.6.1 for the

Walrasian Auction problem. Assuming an honest majority, an honest buyer can be

verified by any honest party (including an independent verifier) other than the seller.

Proof The verifier is provided with the commitment of coefficients by all buyers

(with the majority agreeing). The buyer bl being verified provides their input and

output values of each round; the following buyer bl+1

also provides their input for

each round. bl also provides the random value used in encryption during each round.

The verifier can then duplicate the calculations of bl, ensuring that the output of each

round is consistent with the committed coefficients. If not, bl is dishonest.

If the output reported by bl does not match the input reported by bl+1

, then either

bl is dishonest, or bl+1

is reporting an incorrect value to the verifier. In the latter case,

bl+1

can be required to verify, if it succeeds, then bl is dishonest.

Theorem 5.9.6 Sound Verification (buyer) A rational malicious buyer bl cannot

fabricate verification provided bl+1

is honest.
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Proof If bl+1

correctly reports the value received from bl, then bl must provide the

same value to the verifier, and this must be the value generated from bl’s input.

Generating this input from the output violates the assumption that the encryption

is semantically secure. If bl uses an incorrect input in the protocol (thus generating a

matching output, but not following the protocol), the actual value and thus the impact

on the outcome is completely unpredictable due to the security of the encryption,

violating the assumption of a rational party.

Lemma 5.9.7 � computes the equilibrium value of the Walrasian Auction model and

stores sufficient information for verification to occur.

Proof Note that given the set V = {ES(pinitial), ES(winitial)} and the seller S’s pri-

vate decryption key DS, the entire protocol can be executed by a participating-party.

By revealing DS, the seller only exposes the verification set V and no other private

data. Given this, the participating-party can verify the correctness of the output

of � by retrieving the demand xi � xp from the remaining buyers through a trivial

protocol (where xp is the demand of the participating-party performing the verifica-

tion). The participating-party is thus able to execute � to verify the correctness of

the equilibrium price p⇤.

Theorem 5.9.8 Accountability (seller) A rational seller S will not behave dis-

honestly in �.

Proof This follows from the proof of Theorem 5.7.4, as the seller’s input has no

effect on the final equilibrium price.

Given the previous two lemma’s, we can conclude that � satisfies the Basic Structure

condition.

Theorem 5.9.9 Sound Verification The verification phase of � cannot be fabri-

cated by a malicious party.



81

Proof At the beginning of �, the seller S distributes the set V , such that V =

{ES(pinitial), ES(winitial)} to all buyers b 2 B. It follows naturally that once this

commitment is made, the seller is unable to alter the commitments. Should the seller

provide an erroneous decryption key D⇤

S 6= DS, the commitments will decrypt to

values p⇤initial 6= pinitial and w⇤

initial 6= winitial which defeats the seller’s intention to

fabricate the verification. Thus, we can conclude that the seller cannot succeed in

fabricating the result of the verification process.

With this, we can conclude that our protocol is secure under the AC-framework,

thus enabling malicious behaviour to be caught and contractual incentives put into

place to ensure that semi-honest behavior is incentive compatible.

5.10 Conclusion

We have presented a privacy preserving, incentive compatible market construction

that is secure against malicious parties, going beyond the standard security model to

protect against malicious input to the protocol. To do this, we demonstrated that

by securely computing the Oblivious One-Time Market protocol given by Cole and

Fleischer [62], no agent has an incentive to report false valuations of the goods in the

market. Thus, SMPC solves a long-standing problem in economic theory, as it allows

Léon Walras’ tâtonnement process for arriving at equilibrium to be computed while

conforming to the constraints of the Walrasian Auction model. In this way, trade

does not occur outside of equilibrium, and yet the final equilibrium price is computed

and made available to all agents in the market.
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6 APPLYING GAME THEORY TO CRYPTOGRAPHY

In Chapter 4, we demonstrated the utility of a game theoretic approach to adversarial

settings. Chapter 5 demonstrated the utility of applying cryptographic primitives to

classic game theoretic problems. In this chapter, we will merge cryptography and

game theory to construct a two-party framework for reasoning about the security of

cryptographic protocols. Our framework presents the standard notions of security

through equivalent game theoretic concepts.

We build upon previous results to strengthen the equilibrium concept for ratio-

nal two-party computation. Only rational players acting to maximize their utility

functions are considered. Games are analyzed as extensive form dynamic games of

imperfect information, using a computational variant of perfect Bayesian equilibrium

as the solution concept. We argue that the perfect Bayesian equilibrium is a more

appropriate solution concept than current solutions, as in cryptographic protocols

information is often imperfect by design. Further, the perfect Bayesian equilibrium

concept is able to address dynamic games, where players move sequentially rather

than simultaneously. By considering players that move sequentially, we are able to

remove the assumption of a broadcast channel. Finally, we give novel definitions of

privacy, correctness and fairness solely in terms of game theoretic constructs.

6.1 Introduction

A recent focus of the cryptographic literature has been to formulate a framework

for analyzing the security of protocols from a game theoretic perspective. The notion

of rational multiparty computation considers only a single class of players: those that
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are rational, seeking to maximize their utility functions. A survey of the intersection

of cryptography and game theory is given by Katz [12].

Most previous work towards a general game theoretic framework for reasoning

about security in rational multiparty computation has been limited to those functions

that are non-cooperatively computable (NCC), as defined by Shoham et al. [77]. In

addition to being restricted to NCC, most existing work uses computational variants

of Nash, Correlated or Bayesian equilibrium [15,16,23,39,65] as the solution concept

for games. The exception is work by Gradwohl et al. [30], where the authors consider

a relaxed version of computational sequential rationality that removes non-credible

threats, called threat-free Nash equilibrium. However, all of these solution concepts

consider only games of perfect information. We argue that the notion of perfect

Bayesian equilibrium (PBE), a solution concept for extensive form dynamic games of

imperfect information, is preferable for modeling cryptographic protocols. As players

commonly cannot observe the moves made by others in cryptographic protocols, PBE

offers a natural method for modeling this uncertainty. Further, it formally models

observable actions and auxiliary information available to players that affects their

strategy selection. As extensive form games may contain non-credible threats, we give

a modified version of Gradwohl et al.’s [30] definition that is intuitive for games in the

computational setting. Finally, we give novel definitions capturing the cryptographic

concepts of privacy, correctness and fairness in terms of game theoretic constructs

and prove the necessary and sufficient conditions under which they hold.

The goal of a rational multiparty computation framework is to relax the require-

ments of the malicious and semi-honest models in secure multiparty computation.

The malicious model must protect against all deviations from the protocol specifica-

tion, including actions that do not give an adversary an advantage. Protocols secure

in the semi-honest model achieve greater efficiency, but suffer from the strong assump-
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tion that parties will not deviate from the protocol even if they benefit from doing

so. As we describe in Section 6.6, our framework requires only that parties follow

the protocol if such action constitutes rational behavior. We argue that the assump-

tion of rationality is far weaker than the blind obedience required in the semi-honest

model, and the resulting protocols will be more efficient than their malicious model

counterparts that must prevent arbitrary (i.e., non-rational) actions. Perhaps most

critically, even protocols secure under the malicious model do not prevent a party

from lying about their input. Rational behavior provides a means to incorporate this

into the discussion through incentive compatibility, ensuring that results reflect the

true data.

First we review existing work applying game theory to cryptographic protocols.

Section 6.3 discusses limitations with prior work, in particular showing that exist-

ing approaches do not fully model the rational secret sharing problem. We argue

that modeling imperfect information, beliefs about the game state, and non-credible

threats are desirable qualities of a candidate equilibrium concept for rational mul-

tiparty computation. From the game theory background of Section 3.1, we move

to the computational setting in Section 6.4. A computational variant of the perfect

Bayesian solution concept is defined in Section 6.5, and finally our new game theoretic

framework for analyzing cryptographic protocols is presented in Section 6.6.

6.2 Related Work

The impetus for this work is largely due to a recent survey by Katz describing

ongoing research into potential links between cryptographic and game theoretic no-

tions [12]. We attempt to formulate our definitions in the same manner with the hope

of consensus.
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Many of the current frameworks for rational multiparty computation are limited

in scope to functions that are non-cooperatively computable (NCC) [15,16,23,39,65].

Such a restriction is necessarily imposed under the assumption that parties desire

exclusivity of the function output. That is, they prefer to learn1 the correct result of

the function, while preventing other parties from learning the result. This assumption

is not necessarily valid for all games. In market scenarios, at least two parties must

learn the result of the function in order to complete a trade. That is, an adversary

needs the result of the function to be known to other participants in order to achieve

their goal. Thus, the functions in NCC are a proper subset of those supported in this

framework.

Halpern and Teague study rational multiparty computation under the assumptions

of correctness and exclusivity [23]. They show the impossibility of secret sharing and

general multiparty computation for any deterministic mechanism under these assump-

tions. However, they give randomized algorithms that terminate in expected constant

time for both problems, and show that they satisfy their framework. We note that we

remove the exclusivity requirement from our general framework, although this can be

modeled through a natural extension. Further, we do not consider the notion of iter-

ated deletion of weakly dominated strategies, as this equilibrium concept is sensitive to

the order of strategy deletion [26]. Kol and Naor expand on the work of Halpern and

Teague to give protocols that are not susceptible to backward induction, even in the

presence of exponentially many iterations [26]. These solutions assume the existence

of a broadcast channel, and they give solutions for both the non-simultaneous and

simultaneous cases. The authors choose the notion of a computational Nash equilib-

rium, and leave extensions to subgame perfection open. Subgame perfection requires
1That is, each party prefers to have the ability to derive the correct result of the function. This
may require additional computation after the function output is revealed to the party. This occurs
when, for example, the party provides any input x

0 that differs from the party’s true input x.
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optimal play at each decision node in the game tree, and thus refines Nash equilibria

in games of perfect information in the same manner that PBE refines Nash equilibria

in games of imperfect information. We argue that even the extension to subgame per-

fection is inadequate, as it assumes players are aware of the moves made by others.

The goal of cryptographic interactions is often to prevent learning others’ information

or actions. Instead, we consider extensive form dynamic games of imperfect informa-

tion, where players’ information sets are not guaranteed to be singleton nodes and

players move sequentially rather than simultaneously. Nojoumian et al. [78] intro-

duced socio-rational secret sharing, where rational and malicious players engage in

the same protocol more than once. A public trust network is assumed, which stores

a player’s believed honesty based on past protocol interactions. We go beyond this

model by modeling all players as rational, rather than creating a separate class of

malicious players. Further, we do not assume the existence of a public trust network,

nor do we assume that players necessarily value future interaction.

This work is not the first to attempt a game theoretic framework for construct-

ing rational multiparty computation protocols. Our goal is to unify the existing

frameworks by providing a stronger equilibrium solution concept well-suited for cryp-

tographic protocols, while introducing notions of privacy, correctness, and fairness

defined in game theoretic terms.

The first framework to consider players’ motivations was given by Aumann et

al. [79]. Although the framework does not explicitly consider rationality, the authors

assume that adversaries are covert. That is, they are willing to cheat so long as they

will not be caught doing so. Implicitly, an adversary is assumed to have a utility func-

tion defined solely with respect to their aversion to detection. The authors give three

protocol constructions that provide security gradients between the standard semi-

honest and malicious models of secure multiparty computation. The recent direction
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in the literature is towards a game theoretic framework for constructing protocols

with weaker security guarantees than the standard multiparty computation frame-

works. The most complete game theoretic framework to date was given by Halpern et

al. [34]. They consider how agents play games when computation has an associated

cost and affects agents’ utility functions directly. The authors formalize the notion of

a computational Nash equilibrium, and demonstrate that mixed computational Nash

equilibria are guaranteed to exist for the set of computational games where random-

ization is free. However, the framework considers only Bayesian games of perfect

information. Bayesian Nash equilibrium can result in implausible equilibria, as it

does not exclude non-credible threats. In the setting of cryptography, threatening to

break the underlying cryptosystem would constitute a non-credible threat for a player

bound to probabilistic polynomial time (PPT), despite the action’s optimality for an

unbounded player. We build on their framework to provide a computational model

of extensive form dynamic games of imperfect information.

The most complete framework from a cryptographic perspective that integrates

game theoretic concepts was given by Groce et al. [32], which builds on the frame-

work by Asharov et al. [15]. Asharov et al. demonstrate how standard cryptographic

notions of security can be framed in a game theoretic view when considering ma-

licious fail-stop adversaries. The authors demonstrate that privacy, correctness and

fairness can be met using a game theoretic simulation-based framework. However, the

framework only considers computational Nash equilibrium in extensive-form games

of perfect information. We argue that a computational variant of PBE is preferable

for constructing cryptographic protocols in a game theoretic framework, where play-

ers may not know the actions of other players when their computational abilities are

bounded. The authors limit a player’s strategy set to {�continue, �abort}, where at each

node to follow �continue requires following the protocol specified by the mechanism
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designer precisely. From this the authors argue that non-credible threats in fail-stop

games are meaningless, as a party that aborts cannot be punished. The work of

Groce et al. [32] demonstrates that fairness can be achieved for a much broader class

of utility functions than those specified by Asharov et al. [15]. Further, Groce et al.

consider the byzantine case, where deviations are not limited to the fail-stop model.

However, the equilibrium concept considered by Groce et al., namely Bayesian strict

Nash equilibrium, does not explicitly model players’ beliefs about the game state.

Rather, this concept captures only uncertainty about the types of the other players.

However, the players’ beliefs about the current game state are modeled exogenously

in Groce et al.’s setting. In cryptographic settings, a player’s uncertainty about the

current state is of critical importance, and we demonstrate the shortcomings of other

equilibria concepts in Section 6.3. Our framework builds directly on Asharov et al.’s

work, and as in Groce et al.’s setting, we allow for arbitrary deviation from the

protocol beyond simple aborts.

6.3 Motivation

We motivate our approach by demonstrating cryptographic interactions where

players’ information is imperfect, and their beliefs must be formally modeled. Specif-

ically, we show that a simple change to the rational secret sharing protocol used in

the Groce et al. [32] framework results in a protocol where a rational player would

cheat, but existing work predicts the player behaves honestly.

Cryptographic protocols proceed in a series of rounds, where at each round some

subset of the parties select and play an action. Game theory models such interactions

as extensive form dynamic games, where players move sequentially through a series

of rounds, rather than normal form static games that model a single simultaneous

interaction.
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6.3.1 Imperfect Information

The information available to a player in a cryptographic protocol is of critical

importance. The notion of computational security relies on the fact that players

can be modeled as asymptotically bounded algorithms, and are only able to gain

certain information with negligible probability. Consider for instance the ciphertext

indistinguishability (IND-CPA) game [80]. In this game, an adversary A bound to

probabilistic polynomial time (PPT) has two plaintext messages {m
0

,m
1

: |m
0

| =
|m

1

|}, and the challenger C has an asymmetric key pair {E
C

, D
C

} from a public key

cryptosystem. C publicizes E
C

, and A performs up to polynomially many encryptions

before sending {m
0

,m
1

} to C. C selects a bit b 2 {0, 1} uniformly at random, and

returns E
C

(mb) to A. After performing at most polynomially many operations, A
outputs a guess b0 2 {0, 1}, and succeeds when b0 = b. The cryptosystem is said to

be IND-CPA secure if, for all PPT adversaries A

|Pr[A(E
C

(mb)) = 1]� Pr[A(E
C

(m
1�b)) = 1]|  ✏(�) (6.1)

where ✏(·) is a negligible function and � is the security parameter. Clearly this

property reflects the inability of a computationally bounded adversary to distinguish

between two cases. From a game theoretic perspective, we argue that this lack of

knowledge is properly modeled as an extensive form dynamic game of imperfect in-

formation. When some player p
0

does not observe a previous action by another player

p
1

, we say that the game has imperfect information and p
0

’s information set is non-

singleton. That is, p
0

only knows that p
1

has moved, and does not know which action

was played.

In the IND-CPA ciphertext indistinguishability game, A has imperfect information

as it does not observe C’s action b 7! {0, 1}. Thus, C’s information set contains both
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the left (b 7! 0) and right (b 7! 1) nodes of the game tree � under the assumption that

C is bound to PPT. Current rational multiparty computation frameworks consider

solution concepts that require perfect information, and do not formally model players’

information and beliefs. For instance, if A had some auxiliary information (e.g., C’s

random seed), it may be able to predict C’s choice for b with probability non-negligibly

greater than 1

2

. Thus, any solution concept must explicitly model the fact that moves

in cryptographic interactions are frequently unobserved, and also that players may

have auxiliary information or beliefs that influence their strategy selection.

6.3.2 Updating Beliefs

Additionally, players typically update their beliefs throughout cryptographic pro-

tocols based on observed events. Consider the case of interactive zero-knowledge proof

systems [6]. This game is an interaction between a prover P in possession of a secret,

and a verifier V that is to learn only whether or not P does, in fact, know the se-

cret. In each round, a prover not in possession of the secret succeeds with probability

0 < p < 1. Thus, V must interact with P through k rounds until 1� pk is acceptably

close to 1. If at any round P fails the test, then V knows with certainty that P does

not possess the secret and the game terminates. However, the likelihood that P does

know the secret approaches 1 as k ! 1. Thus, V is consistently updating a belief

about P throughout the protocol.

6.3.3 Dynamic Games

In game theory, games may be either static or dynamic. In the former, actions

are played simultaneously, while in the latter actions may be played sequentially. In

a computational setting, this is equivalent to deciding between whether or not to
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assume the existence of a broadcast channel. As broadcast channels are a relaxation

of real world interactions, removing this assumption is desirable as it allows players to

act in a specified order. This introduces non-trivial issues into protocols that may be

very basic in the semi-honest model, such as the recovery protocol for secret sharing.

This protocol was modeled as an extensive form dynamic game by Groce et al. [32],

who give a solution when players must move sequentially in a known order.

6.3.4 Non-credible Threats

Recently, Halpern et al. [34] showed that a Nash equilibrium is guaranteed to

exist for all finite machine games under the assumption that randomization is free.

However, their framework considers only Bayesian Nash equilibrium: an equilibrium

concept susceptible to implausible equilibria through non-credible threats. A threat

is not considered credible if it is “off the equilibrium path” for a player. That is, action

a is not credible if player i receives a greater expected utility by playing action a0 6= a.

We consider a computational non-credible threat to be any action a where there exists

another action a0 that yields negligibly less utility and is computable subject to the

player’s complexity bound C . Our definition assumes that a player will choose the

optimal strategy whenever their complexity C allows such action to be performed.

6.3.5 Rational Secret Sharing

The necessity of modeling imperfect information, and the difficulty imposed when

broadcast channels cannot be assumed, is easily illustrated using the most com-

mon example of rational cryptographic protocols to date: rational secret sharing

[22, 24, 25, 32, 35, 81]. First introduced by Halpern and Teague [23], the authors con-

sider a set of purely rational players, seeking only to maximize their respective utility
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functions. This departs from the standard security models in cryptography, which

assume two distinct types: semi-honest players that follow the protocol specification

while possibly analyzing the protocol transcript in an attempt to learn more informa-

tion, and malicious players that may deviate arbitrarily. The goal of general secret

sharing is to split a secret among n parties such that any k shares are sufficient to

recover the secret value, using a scheme such as the polynomial interpolation ap-

proach proposed by Shamir [82]. Rational secret sharing, introduced by Halpern and

Teague [23], is particularly concerned with the process of recovering the secret from

the shares. As noted by Halpern et al. [23], rational players’ utility functions are

assumed to value exclusivity, where preference is given to learning the output of the

function while preventing other players from doing so. Assume that a player’s strat-

egy set � is limited to � 2 {H,?}, where H denotes the honest strategy of revealing

the player’s share, and ? denotes the action of not revealing the share. Without loss

of generality, assume µ+ denotes positive utility, µ� denotes negative utility, and µ0

denotes no net change in utility. We formally define a utility function µf
(�

0

, �
1

) for

fairness where exclusivity is valued in Definition 6.3.1:

Definition 6.3.1 Let ⇡ be a two-party protocol, f be a two-party function, and � 2
{H,?}. Then, for every x

0

, x
1

as above the utility function for fairness valuing

exclusivity for party pi, denoted µf
i , is defined as:

µf
0

(�
0

, �
1

) 7!

8

>

>

>

>

<

>

>

>

>

:

µ+

: output⇡,0 = f(x
0

, x
1

) ^ output⇡,1 6= f(x
0

, x
1

)

µ0

: output⇡,0 = f(x
0

, x
1

) ^ output⇡,1 = f(x
0

, x
1

)

µ�

: output⇡,0 6= f(x
0

, x
1

)

Under this assumption, no party has any incentive to distribute their share to the

other parties. Rather, the equilibrium is to wait for other players to distribute their

shares, as this is the only action that increases a player’s utility function. The authors

demonstrate that this implies no deterministic protocol exists where rational parties
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Figure 6.1.: Imperfect Information Sets in the Rational Secret Sharing Game

are willing to disseminate their shares to other players. However, their randomized

protocol relies on the fact that parties are unaware whether the current state is

terminal (allowing the secret to be recovered), or merely a “test” state (where the

secret cannot be recovered, but players who do not distribute shares are caught as

cheaters).

This fundamental lack of information constitutes an extensive form game of imper-

fect information, for which the Nash equilibrium (and computational variants thereof)

are insufficient equilibria concepts.

Figure 6.1 illustrates the two-party rational secret sharing game �, which proceeds

in a series of rounds. At round i, player p
0

’s share xi
0

may be a legitimate share, such

that combined with p
1

’s share the secret may be recovered. However, p
0

’s share may

also be illegitimate, such that the shares combine to a pre-determined test value

that is not the original secret. Players are not aware whether the given round i

is the terminal round i⇤ where the secret may be recovered, or a test round i 6=
i⇤ where no information may be learned from the shares. Assume that a player’s

strategy set � is limited to � 2 {H,?}, where H denotes the honest strategy of

revealing the player’s share, and ? denotes the action of not revealing the share. By

choosing i⇤ from a geometric distribution, as in Groce et al. [32], cheating players

that choose strategy � =? when i 6= i⇤ are caught and the game may be terminated.
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Thus, players now have an incentive to distribute their share, as playing ? only

yields µ+ when i = i⇤. When the perfect Bayesian equilibrium was proposed for

modeling extensive form games of imperfect information by Harsanyi [33], the author

specifically cautioned against using the standard Nash equilibrium concept. This

view was echoed by Estevez-Tapiador et al. [83], specifically in the context of rational

exchange. The presence of non-singleton information sets in the rational secret sharing

game is illustrated by the dashed line between the two possible game states in Figure

6.1.

The difference between the Bayesian strict Nash equilibrium (BNE), used in the

rational secret sharing setting of Groce et al. [32], and the perfect Bayesian equilibrium

(PBE) concept we consider in our setting, bears clarification. If all moves were

simultaneous, BNE and PBE would yield the same equilibria. However, in extensive

form games of imperfect information, a player may not be able to observe all moves

by other players. This results in non-singleton information sets, which BNE is unable

to model, as it only considers uncertainty about players’ types. Consequently, this

uncertainty about the game state should be explicitly modeled into their expected

utility. The PBE concept is able to “cut through” the non-singleton information sets

present in the rational secret sharing game, as it considers players’ beliefs about the

type of other players as well as beliefs about the current game state. Thus, PBE avoids

implausible equilibria that result from the presence of non-singleton information sets.

H
1

?
1

H
0

(a
0

, a
1

) (c
0

, b
1

)

?
0

(b
0

, c
1

) (d
0

, d
1

)

Figure 6.2.: The Payoff Table for the Rational Secret Sharing Game
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As in the setting of Groce et al. [32], assume that exclusivity holds. Thus, each

player orders their preferences according to bi > ai � di � ci, so that player pi prefers

to learn the correct result while p
1�i learns an erroneous result.

We review the share distribution and reconstruction phase considered by Groce

et al. [32].

Share Generation:

• A value i⇤ 2 {1, . . . } is chosen according to a geometric distribution, and rep-

resents the iteration (unknown to the parties) in which both parties will learn

the correct output.

• Values r0
1

, r1
1

, . . . , r0n, r
1

n are chosen, with the {r0i }ni=1

intended for p
0

and the

{r1i }ni=1

intended for p
1

. For i � i⇤, we have r0i = f
0

(x
0

, x
1

) and r1i = f
1

(x
0

, x
1

),

while for i < i⇤ the {r0i } (resp., {r1i }) values depend on p
0

’s (resp. p
1

’s) input

only.

• Each rbi value is randomly shared as sbi and tbi (with rbi = sbi � tbi), where sbi is

given to p
0

and tbi is given to p
1

.

Share Recovery: For n iterations, do as follows:

• p
1

sends t0i to p
0

, enabling p
0

to learn r0i

• p
0

sends t1i to p
1

, enabling p
1

to learn r1i

When the protocol ends, a party outputs the most recently learned value of ri.

We now review the guessing strategies employed by Groce et al. [32], which players

use when the other player aborts the protocol prematurely. The guessing distribution

Wi are chosen such that the strategy vector {(cooperate,W
0

), (cooperate,W
1

)} is a

Bayesian strict Nash Equilibrium. For all i < i⇤, the rji values are chosen from Wj,

which is assumed to assign non-zero probability to all elements in the range of f . The
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critical issue with the Groce et al. [32] approach is that the expectation for utility

exogenously considers the probability that i
?

= i⇤, rather than making this belief

explicit in the equilibrium concept. Thus, they restrict a player to fix their strategy

at the start of the game for consistency with BNE, even as a mediator introduces

auxiliary information.

Consider a game where p
0

is given auxiliary information about whether i ?

= i⇤ after

the game has started. Suppose the share generator reveals to p
0

that the current round

i is, in fact, the terminal round i⇤. This information crucially affects p
0

’s expected

utility function under PBE, as p
0

’s beliefs about i⇤ have changed from the start

of the game. This information should be explicitly factored into the calculation of

expected utility, but the definition of Bayesian Nash equilibria ignores this, focusing

on uncertainty only about the player’s types. Thus, even in the case where p
0

knows

the correct value of i⇤ at some round k, the BNE for the above game predicts that the

player will play honestly and reveal their share. However, PBE allows p
0

to update

their belief about i⇤ as the game progresses, and requires that all subsequent play be

optimal with respect to their beliefs. Thus, PBE predicts that p
0

should not reveal

their share, and instead collect p
1

’s share to recover the secret. Given p
0

’s beliefs

about the game state, this clearly maximizes p
0

’s expected utility. The equilibrium

predicted by BNE, namely for p
0

to distribute their share, is implausible given the

auxiliary information provided to p
0

and the fact that p
0

values exclusivity. This

implausible equilibrium is avoided when the PBE concept is used.

Formally, assume that players have reached round i of the rational secret sharing

recovery game �. There are at most n > i rounds in �, and the terminal round i⇤

is chosen from a geometric distribution. In the setting of Groce et al. [32], incentive

compatibility must hold for all players a priori. To accomplish this, we must set the

parameter ↵, the probability of success. Since in each round i there are two distinct
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possibilities (namely, i = i⇤ and i 6= i⇤), we must set ↵ such that no party has an

incentive to abort during the game. Groce et al. [32] show that such an ↵ exists.

All that remains to be shown is that the uncertainty of a player about the types

of the other players does not provide an incentive to abort. Assume that a player

type ti 2 {continue, abort}. The fact that uncertainty about types does not induce

a player to abort follows from the assumption of incentive compatibility. That is,

all players know i is chosen from a geometric distribution parameterized by ↵, so

no player has an incentive to abort. At round i, each player has observed all other

players continue the protocol, otherwise the game would have terminated. Thus, all

players are convinced that the remaining players are of type continue. This is the

BNE equilibrium for �, even when uncertainty about the game state is introduced, as

the BNE concept does not consider game state beliefs.

The PBE equilibrium concept weights strategies according to a player’s beliefs

about other players’ types and the current game state. These beliefs are updated

throughout the game based on observed actions and auxiliary information provided

to the player. Recall that player pi receives payoff bi when pi selects abort (?) while

all other players select continue (H). The payoff bi > ai, where ai denotes the case

where all players select H. The probability that i = i⇤ is given by the CDF for a

geometric distribution parameterized with ↵:

Pr[i = i⇤] = 1� (1� ↵)i (6.2)

Thus, in PBE players would weight bi by Pr[i = i⇤] and ai by 1 � Pr[i = i⇤].

As Groce et al. have demonstrated, ↵ can be chosen to guarantee that ai(1 � ↵)i >

bi(1 � (1 � ↵)i), so BNE and PBE yield the same equilibrium for �. However, if we

introduce auxiliary information about i⇤ to player pi, then the equilibriums diverge.

Assume at round i a mediator informs pi that i = i⇤. Now, we have:
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µi(abort) = Pr[i = i⇤]bi (6.3)

= (1)bi (6.4)

> Pr[i 6= i⇤]ai (6.5)

= (0)ai (6.6)

= µi(continue) (6.7)

Thus, the auxiliary information provided to pi concerning the game state affects

µi such that abort provides greater utility than continue. This is intuitive, as pi values

exclusivity, so knowing i⇤ induces a decision to abort. However, BNE does not weight

strategies by uncertainty about the game state. Even though pi is aware i = i⇤, BNE

ranks µi(continue) > µi(abort), which is an implausible equilibrium.

Given these observations, we will argue that the notion of PBE is a more appro-

priate solution concept than those previously proposed, as it explicitly models games

of imperfect information.

6.4 Computational Setting

Cryptographic protocol construction necessarily requires the computational ability

of players to be explicitly modeled. Game theory makes no such assumptions; the

computational abilities of the players are considered unlimited, and do not affect their

utility functions. Thus, any game theoretic framework for building cryptographic

protocols requires that computational limitations be taken into account.
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Interactive Turing Machines

In order to transform the standard game theoretic definitions to the computational

setting, we must redefine functionalities to be computable by an interactive Turing

machine (ITM)2, and explicitly model the complexity of players’ ITMs following the

work of Halpern et al. [34].

Definition 6.4.1 Let ~M = M
1

⇥ · · ·⇥Mn denote the set of ITMs that terminate with

probability 1. 8M 2 ~M , we have that M consists of a finite read-only input tape MI ,

a finite read-only random tape MR with elements drawn uniformly at random from

{0, 1}⇤, a finite read-write work tape MW , a finite read-only communication tape MC,

and a finite write-only output tape MO.

As players are now modeled as ITMs, actions and types are represented as elements

drawn from {0, 1}⇤ and correspond to M ’s input and output.

Following Halpern et al.’s [34] definitions, we define a view as the pair v = (t, r) 2
({0, 1}⇤, {0, 1}⇤), where t is the type of the player read from MI , and r is the finite

bit string M reads from MR. We define M(v) to be the finite output written to MO.

Each player’s ITM is bounded by an associated complexity function C :

~M ⇥
{0, 1}⇤ ! N. When considering our framework’s application to cryptography, it is

useful to define the complexity in terms of a globally known security parameter �, as

in Asharov et al.’s work [15]. For any machine M with C (M,�) = 0, we require that

M =?, where ? denotes the ITM that does not read MI , write to MO, or change

states.
2Modeling players as ITMs is the approach taken by Halpern et al. [34] and Asharov et al. [15], as
this is a foundational model in the cryptographic literature [5, 6].
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6.5 Perfect Bayesian Equilibrium

Formal definitions of perfect Bayesian equilibria (PBE) are usually not generaliz-

able to general extensive form games, and contain the vague requirement that beliefs

be updated according to Bayes’ rule “whenever possible”. Bonanno [37] gives a defi-

nition of PBE that is applicable for general extensive form games, but we will use the

definition by Diaz et al. [38], as they go further by extending to general extensive form

games as well as clarifying the ambiguous “whenever possible” updating requirement.

We first require that, for player i 2 N , their assessment (�i, �i) consisting of a

strategy �i and a belief �i about the game state, be sequentially rational:

Definition 6.5.1 An assessment (�i, �i) is (computationally) sequentially ratio-

nal if, for every player i 2 N and every information set Ii 2 Ii, there holds:

µi(�i, �i|Ii) + ✏(�) � µi((��i, �
0

i), �i|Ii) (6.8)

for every strategy �0

i, a probability distribution over actions, of player i, where (�
�i, �0

i)

is a strategy profiles that all players stick to the strategy ~� except that player i turns to

the strategy �0

i, and µi((��i, �0

i), �i|Ii) denotes player i’s utility induced by this strategy

profile and the belief system �i, a probability distribution over game states, conditional

on Ii being reached. The term ✏(�) denotes a negligible utility gain with respect to

the security parameter �, and �i is an efficiently computable strategy for player i with

complexity C .

Next, we give the definition of a weak perfect Bayesian equilibrium, which we build

on to construct the final equilibrium concept that applies to general extensive form

games:
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Definition 6.5.2 Let � be an extensive form game. An assessment (�, �) is a weak

perfect Bayesian equilibrium if it is sequentially rational and, on the path of �,

� is derived from � from Bayes’ rule.

With this, we reach the definition of a C -simple perfect Bayesian equilibrium:

Definition 6.5.3 Let � be an extensive form game. An assessment (�, �) is a C -

simple perfect Bayesian equilibrium if, for each regular information set Iki , the

restriction of (�, �) to �Iki
(�, �) is sequentially rational and � is obtained by condi-

tional updating from � (i.e., the restriction of (�, �) to �Iki
(�, �) is a weak perfect

Bayesian equilibrium), where � is efficiently computable by an interactive Turing ma-

chine (ITM) with complexity C .

6.6 Framework

In order to show the application of game theoretic models to cryptography, a

proper security model must be introduced. Thus, we consider appropriate game

theoretic definitions of privacy, correctness and fairness.

Our framework is an extension of Asharov et al.’s [15] model of security under

fail-stop games. The original work considered two players with action sets limited

to {�abort, �continue}, where �abort implied that the ITM output a special signal ?
observed by all players and stopped playing the game, and �continue is the strategy of

following the game specification without deviation. Thus, the only deviating strategy

is to abort the protocol, which is similar to the standard semi-honest security model.

We extend this model to assume that �continue is precisely the vector of strategies

of not aborting, regardless of whether or not the chosen action is the honest choice.

Similarly, �deviate

= {�U/{�honest, �abort}} is the set of all possible strategies that are

dishonest, taking �U to be the universe of strategies. That is, �deviate corresponds to
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choosing a strategy � that deviates from the prescribed protocol. Without loss of

generality, we assume that �continue

= {�honest, �deviate}, where �honest is equivalent to

following the prescribed protocol. As multiparty computation players are assumed to

be mutually distrustful in the cryptographic literature, we assume they are risk-averse

in the game theoretic sense. Thus, when an honest player cannot distinguish between

the probability of A selecting �deviate

A

or �honest

A

, the honest party assumes that �deviate

A

was selected. We consider only the two-party case, as the extension to multiple parties

requires modeling player collusion. Throughout, we let µ+ represents positive utility

gain, µ� represent negative utility, and µ0 represents neutral utility. We now give

novel definitions of privacy, correctness and fairness in purely game theoretic terms,

considering a more expressive model where players may deviate arbitrarily from the

protocol beyond simply aborting.

6.6.1 Privacy

We follow Asharov et al.’s [15] intuition and require that parties’ utility functions

reflect the loss of privacy with negative utility. This requires no assumptions about

other players’ utility functions with respect to the gain of information; the burden

is player specific and known, as we assume players are aware of their own utility

functions. Thus, players may choose to require that any subset of privacy, correctness

and fairness are satisfied by the protocol.

We first introduce a new notion of indistinguishability defined in terms of a C -

bounded distinguisher D’s ability to differentiate between information sets. We first

introduce notation for an ITM’s local history:

Definition 6.6.1 Let ⇡ = (M
0

,M
1

) be a two-party protocol between a pair of ITMs

(M
0

,M
1

). Then we write
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Hk
⇡,i(x0

, x
1

,�) = (xi,MR,m
i
1

, . . . ,mi
k) (6.9)

to denote the local history of Mi at round k, with input xi, random tape MR,

security parameter � and mi
j represents the jth message.

We consider the set of infinitely many input tuples (x
0

, x0

1

, x1

1

,�) where we have

that |x
0

| = |x0

1

| = |x1

1

| = �, and party p
0

’s input is fixed at x
0

while p
1

’s input is in

the set {x0

1

, x1

1

}.

Definition 6.6.2 We say that a finite extensive form computational game �

� has

indistinguishable initial information sets in the presence of C -bounded ad-

versaries if:

|Pr[(H0

⇡,D(x0

, x0

1

,�) 2 I
0

) = 1]� Pr[(H0

⇡,D(x0

, x1

1

,�) 2 I
0

) = 1]|  ✏(�) (6.10)

for some negligible function ✏(·).

That is, no C -bounded distinguisher D can distinguish the type (i.e., private input)

of party p
1

with probability non-negligibly greater than 1

2

. With this notion formally

defined, we now give a definition for players’ utility functions with respect to privacy:

Definition 6.6.3 Let ⇡ be a two-party protocol and f be a two-party function. Then,

for every x0

0

, x1

0

, x
1

such that f(x0

0

, x
1

) = f(x1

0

, x
1

), and for every C -bounded distin-

guisher D, the utility function for privacy µp for party pi, on input x
0

2 {x0

0

, x1

0

},
is defined by

• µp
0

(H?
⇡,i) = 0 when p

0

aborts immediately

• µp
0

(Hk
⇡,0(x

b
0

, x
1

,�)) 7!

8

>

<

>

:

µ�

: guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = b0, xb
0

= xb0
0

µ+

: otherwise
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where we write guess : H! Ti to denote a function mapping a player’s history to

other players’ types.

Initially ⇡ is run, then D is given as input the local state of ⇡ w.r.t. pi and two

auxiliary values (x0

0

, x1

0

). D outputs a guess b0 2 {0, 1}, where D succeeds whenever

xb
0

= xb0
0

.

For all rational players with utility functions µ 2 µp, we have that µ(�continue

) >

µ(�abort

) iff :

Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 1] =

1

2

+ ✏(�) (6.11)

That is, a rational party with a utility function preferring privacy (µ 2 µp) only

continues participating in the protocol (i.e., by selecting a strategy in �continue) if for

all C -bounded adversaries, the probability of success is at most negligibly greater

than 1

2

. We let �deviate imply that

Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 1] >
1

2

+ ✏(�) (6.12)

That is, by playing �deviate the adversary has an advantage at breaking the privacy

of the protocol with probability non-negligibly greater than 1

2

. Any other strategy

� 62 �deviate will not affect privacy under this assumption, although it may affect

correctness or fairness. We restrict our attention to privacy at the moment.

Definition 6.6.4 Let f and ⇡ be as above. Then, ⇡ is C -Game-Theoretic Private

for party pi if µi(�honest

0

, �honest

1

) is a C -PBE with respect to µp
i,i2{0,1}, �i,i2{0,1} and all

C -bounded distinguishers D.

Our next theorem proves how to define a protocol ⇡ such that ⇡ will satisfy

Definition 6.6.4:
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Theorem 6.6.1 Let f be a deterministic two-party function, and let ⇡ be a two-party

protocol that computes f correctly. Then, ⇡ is C -Game-Theoretic Private w.r.t.

p
0

(resp. p
1

) iff ⇡ has indistinguishable initial information sets in the presence of

C -bounded adversaries.

Proof [Theorem 6.6.1] We first demonstrate that if ⇡ is C -Game-Theoretic Private

w.r.t. p
0

, then ⇡ has indistinguishable initial information sets w.r.t. p
0

in the presence

of C -bounded adversaries.

If ⇡ is C -Game-Theoretic Private w.r.t. p
0

, then by definition we have that:

µ
0

(�honest

0

|�
0

,H
0

) + ✏(�) � µ
0

(�0

0

, �¬honest

0

|�
0

,H
0

) (6.13)

That is, if ⇡ is C -Game-Theoretic Private, then players receive more utility by playing

strategy �honest than any other strategy �¬honest

= {�U/�honest}. Assume by contradic-

tion that ⇡ does not have indistinguishable initial information sets w.r.t. p
0

. Without

loss of generality, we assume A corrupts p
1

. Then a C -bounded adversary A is able

to choose a strategy in the set �deviate

1

, where A invokes a C -bounded distinguisher D
which succeeds in differentiating p

0

’s information set with probability

Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 1] >
1

2

+ ✏(�) (6.14)

as given by Equation 6.12, which is a non-negligible advantage. Thus, we have that:

µ
0

(�honest

0

, �deviate

1

) = Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 1] · µ� (6.15)

+ Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 0] · µ+ (6.16)

< µ0 < µ
0

(�abort

0

, �deviate

1

) = µ0 (6.17)
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thus contradicting the assumption that �honest

0

is a C -PBE w.r.t. p
0

, and that ⇡

is C -Game-Theoretic Private by Definition 6.6.4, as �abort yields more utility for p
0

than �honest.

Next, we show that if ⇡ has indistinguishable initial information sets w.r.t. p
0

,

then ⇡ is C -Game-Theoretic Private. By definition, if ⇡ has indistinguishable initial

information sets w.r.t. p
0

, then there does not exist a strategy in the set �deviate

A

such

that, for any C -bounded distinguisher D invoked by A

Pr[guess⇡((Hk
⇡,D(x

b
0

, x
1

,�) 2 I
D

)) = 1] >
1

2

+ ✏(�) (6.18)

Assume by contradiction that �honest

0

is not a C -PBE w.r.t. p
0

. Then, we must have

that:

µ
0

(�abort

0

, �¬deviate

1

) > µ
0

(�honest

0

, �¬deviate

1

) (6.19)

Clearly we have that A’s strategies are limited to �¬deviate

1

= {�honest

1

, �abort

1

}, as by

assumption ⇡ has indistinguishable initial information sets w.r.t. p
0

, so no strategy in

the set �deviate

1

exists by Equation 6.12. Consider first the strategy pair (�abort

0

, �abort

1

):

µ
0

(�abort

0

, �abort

1

) = µ0

= µ
0

(�honest

0

, �abort

1

) (6.20)

Thus, �honest

0

is a C -PBE w.r.t. p
0

, contradicting the assumption. Similarly, consider

the strategy pair (�abort

0

, �honest

1

):

µ
0

(�abort

0

, �honest

1

) = µ0 < µ
0

(�honest

0

, �honest

1

) = µ+ (6.21)

Thus, �honest

0

is a C -PBE w.r.t. p
0

, contradicting the assumption.
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6.6.2 Correctness

Asharov et al.’s [15] notion of correctness is similar to their notion of privacy:

party pi prefers to learn the correct output of the function f to learning an incorrect

output. We modify their definition with respect to the utility gained from aborting

before the protocol starts. Rather than specify this utility as µc
i(H?

⇡,i) = µ+, we say

that a party that does not participate in the protocol receives µc
i(H?

⇡,i) = µ0, so that

parties prefer to participate in the protocol. As defined in the original work, players

receive the same utility for not participating as they do for receiving the correct

output of the function. As we assume computation is costly, it seems more natural

to assign greater utility to receiving the correct output of the function.

As previously specified when considering privacy, we consider the set of infinitely

many input tuples (x
0

, x0

1

, x1

1

,�) where we have that |x
0

| = |x0

1

| = |x1

1

| = �, and party

p
0

’s input is fixed at x
0

while p
1

’s input is in the set {x0

1

, x1

1

}.

Definition 6.6.5 Let f be a deterministic two-party function, and let ⇡ be a two-

party protocol that computes f correctly. Then, for every x
0

, x
1

as above the utility

function for correctness for party pi, denoted µc
i , is defined as:

• µc
i(H?

⇡,i) = µ0

• µc
i(output⇡,i, x0

, x
1

) 7!

8

>

<

>

:

µ+

: output⇡,i = f(x
0

, x
1

)

µ�

: otherwise

We consider �honest to represent the strategy that follows the protocol specification

of ⇡, which by definition computes f correctly. Similarly, any other strategy � 2
{�deviate, �abort} is assumed to compute f incorrectly. That is, we limit �deviate to those

strategies that yield an incorrect output. Other strategies certainly exist in �deviate

that will not alter the result, but these are handled when privacy and fairness are
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required. To satisfy the correctness condition, we need only consider those strategies

in �deviate that yield incorrect outputs of f .

Definition 6.6.6 Let f and ⇡ be as above. Then, ⇡ is C -Game-Theoretic Correct

for party pi if µc
i(�

honest

0

, �honest

1

) is a C -PBE with respect to µc
i,i2{0,1}, �i,i2{0,1} and all

C -bounded adversaries A.

We now prove a theorem defining how protocol ⇡ may satisfy Definition 6.6.6:

Theorem 6.6.2 Let f be a deterministic two-party function, and let ⇡ be a two-party

protocol that computes f correctly. Then, ⇡ is C -Game-Theoretic Correct w.r.t.

p
0

(resp. p
1

) if

8�
0

, �deviate

1

2 I
0

(Hk
) =) I

0

(Hk
) = {�deviate

1

} (6.22)

That is, all information sets containing strategy �deviate

1

are singleton nodes, dis-

tinguishable by any distinguisher D of bounded complexity C .

Proof [Theorem 6.6.2] We demonstrate that if ⇡ is C -Game-Theoretic Correct w.r.t.

p
0

, then 8�
0

, �deviate

1

2 I
0

(Hk
) =) I

0

(Hk
) = {�deviate

1

}. Intuitively, this means that

if ⇡ satisfies Definition 6.6.6, then p
0

must be able to differentiate p
1

selecting �deviate

rather than �¬deviate.

If ⇡ is C -Game-Theoretic Correct w.r.t. p
0

, then by definition we have that:

µc
0

(�honest

0

|�
0

,H
0

) + ✏(�) � µc
0

(�0

0

, �¬honest

0

|�
0

,H
0

) (6.23)
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That is, if ⇡ is C -Game-Theoretic Correct, then players receive greater utility by

playing strategy �honest than any other strategy �¬honest

= {�U/�honest}. Assume by

contradiction that

8�
0

, �deviate

1

2 I
0

(Hk
) 6) I

0

(Hk
) = {�deviate

1

} (6.24)

: 9I
0

(Hk
) = {�abort

1

, �honest

1

, �deviate

1

} (6.25)

That is, �deviate

1

exists in non-singleton information sets for p
0

. Thus, for some previous

history Hj
0

, j < k, we have that p
0

cannot distinguish between Hj
= {�deviate

1

} and

Hj
= {�honest

1

}, where we do not consider Hj
= {�abort

1

} as p
1

would output ?, and

p
0

would know with probability 1 that this strategy was used. Recall that risk-averse

participants assume �deviate when information sets are non-singletons. We have that

µc
0

(�honest

0

, �deviate

1

) = µ� < µc
0

(�abort

0

, �deviate

1

) = µ0 (6.26)

which contradicts the assumption that �honest

0

is a C -PBE, as aborting yields more

utility than engaging in the protocol, and that ⇡ is C -Game-Theoretic Correct w.r.t.

p
0

by Definition 6.6.6.

6.6.3 Fairness

In Asharov et al.’s [15] original definitions for fairness, players are implicitly as-

sumed to abide by the exclusivity property: a player prefers to be the only party to

learn the output over a fair distribution of the function result. We argue that this

assumption does not always hold.

Any framework constructed under the assumption of exclusivity is limited to the

set of non-cooperatively computable (NCC) [77] functions. Let f(·, ·) be a two-party
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function, with party pi holding input xi, i 2 {0, 1}. If party pi provides an alternate

input x0

i 6= xi to f , a fair protocol outputs f(x0

i, x1�i) to all parties. However, if pi can

compute g(f(x0

i, x1�i), xi) = f(xi, x1�i), then pi has no rational incentive to provide

their true input xi as pi alone can now deduce the correct output of the function

f(xi, x1�i) from the output f(x0

i, x1�i). Thus, any framework requiring the exclusivity

requirement is limited to functions for which the correct output cannot be produced

given knowledge of the function and its output on a different input.

As an example, consider auction scenarios. Clearly, any adversary requires that

all parties learn the output of the protocol even if it is not the correct output, as the

result induces others to perform the actual goal of the protocol: distributing goods

or services to the winner. If an adversary was the only party to receive the output,

no distribution occurs and the effort was pointless.

We modify Asharov et al.’s [15] original utility function for fairness to reflect the

fact that the exclusivity assumption does not always hold. Let E denote the set of

players whose utility functions for fairness µf value exclusivity :

Definition 6.6.7 Let ⇡ be a two-party protocol and f be a two-party function. Then,

for every x
0

, x
1

as above the utility function for fairness for party pi, denoted µf
i ,

is defined as:

µf
0

(�
0

, �
1

) 7!

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

µ+

: output⇡,0 = f(x
0

, x
1

) ^ output⇡,1 6= f(x
0

, x
1

) ^ p
0

2 E

µ+

: output⇡,0 = f(x
0

, x
1

) ^ output⇡,1 = f(x
0

, x
1

) ^ p
0

62 E

µ�

: output⇡,0 = f(x
0

, x
1

) ^ output⇡,1 6= f(x
0

, x
1

) ^ p
0

62 E

µ�

: output⇡,0 6= f(x
0

, x
1

) ^ output⇡,1 = f(x
0

, x
1

)

µ0

: otherwise

We consider �honest to represent the strategy that follows the protocol specification

of ⇡. Similarly, fairness is only compromised when a party selects �abort, which

deprives other players of information necessary to compute the output.



111

Definition 6.6.8 Let f and ⇡ be as above. Then, ⇡ is C -Game-Theoretic Fair

for party pi if µf
i (�

honest

0

, �honest

1

) is a C -PBE with respect to µf
i,i2{0,1}, �i,i2{0,1} and all

C -bounded adversaries A.

We now prove a theorem defining how protocol ⇡ may satisfy Definition 6.6.8:

Theorem 6.6.3 Let f be a deterministic two-party function, and let ⇡ be a two-party

protocol that computes f correctly. Then, ⇡ is C -Game-Theoretic Fair w.r.t. p
0

(resp. p
1

) iff 8Hk

|Pr[output⇡,0(Hk
) = f(x

0

, x
1

)]� Pr[output⇡,1(Hk
) = f(x

0

, x
1

)]|  ✏(�) (6.27)

That is, at any round k, the strategy �abort yields a player at most a negligible

advantage over other players at determining the correct function output f(x
0

, x
1

).

Proof [Theorem 6.6.3] We first demonstrate that if ⇡ is C -Game-Theoretic Fair

w.r.t. p
0

, then p
1

has a negligible advantage over p
0

at determining the correct

function output f(x
0

, x
1

) when playing strategy �abort

1

.

If ⇡ is C -Game-Theoretic Fair w.r.t. p
0

, then by definition we have that:

µ
0

(�honest

0

|�
0

,H
0

) + ✏(�) � µ
0

(�0

0

, �abort

0

|�
0

,H
0

) (6.28)

That is, if ⇡ is C -Game-Theoretic Fair, then players receive more utility by playing

strategy �honest than aborting and attempting to recover f(x
0

, x
1

) on their own. As-

sume by contradiction that p
1

has a non-negligible advantage over p
0

at determining
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the correct function output f(x
0

, x
1

) when playing strategy �abort

1

. Without loss of

generality, we assume A corrupts p
1

. Then we have that

Pr[output⇡,1(Hk
) = f(x

0

, x
1

)] >
1

2

+ ✏(�) (6.29)

which is a non-negligible advantage. Thus, we have that:

µ
0

(�honest

0

, �abort

1

) = Pr[output⇡,1(Hk
) = f(x

0

, x
1

)] · µ� (6.30)

+ Pr[output⇡,0(Hk
) = f(x

0

, x
1

)] · µ+ (6.31)

< µ0 < µ
0

(�abort

0

, �abort

1

) = µ0 (6.32)

thus contradicting the assumption that �honest

0

is a C -PBE w.r.t. p
0

, and that ⇡

is C -Game-Theoretic Fair by Definition 6.6.8, as �abort yields more utility for p
0

than

�honest.

Next, we show that if p
1

has at most a negligible advantage over p
0

at determining

the correct function output f(x
0

, x
1

) when playing strategy �abort

1

, then ⇡ is C -Game-

Theoretic Fair. By definition, we have that

|Pr[output⇡,0(Hk
) = f(x

0

, x
1

)]� Pr[output⇡,1(Hk
) = f(x

0

, x
1

)]|  ✏(�) (6.33)

Assume by contradiction that �honest

0

is not a C -PBE w.r.t. p
0

. Then, we must have

that:

µ
0

(�abort

0

, �abort

1

) > µ
0

(�honest

0

, �abort

1

) (6.34)

Consider first the strategy pair (�abort

0

, �abort

1

):

µ
0

(�abort

0

, �abort

1

) = µ0

= µ
0

(�honest

0

, �abort

1

) (6.35)
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Thus, �honest

0

is a C -PBE w.r.t. p
0

, contradicting the assumption. Similarly, consider

the strategy pair (�abort

0

, �honest

1

):

µ
0

(�abort

0

, �honest

1

) = µ0 < µ
0

(�honest

0

, �honest

1

) = µ+ (6.36)

Thus, �honest

0

is a C -PBE w.r.t. p
0

, contradicting the assumption.

6.7 Conclusion

We have presented an expressive two-party framework for reasoning about the se-

curity of cryptographic protocols in game theoretic terms, where all players are only

assumed to be rational. We have demonstrated the ability of the perfect Bayesian

equilibrium concept to model the inherent uncertainty and auxiliary information in

cryptographic protocols, and translated this into the computational domain. Finally,

we have provided novel definitions of privacy, correctness, and fairness in game theo-

retic terms, and demonstrated the conditions under which they hold.

We expand this two-party framework to the multiparty setting in Chapter 7. Using

the multiparty model, we apply our framework to a series of classic games from the

game theoretic literature. Additionally, we apply our framework to rational secret

sharing, the most commonly examined rational cryptographic protocol.
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7 REALIZING RATIONAL MULTIPARTY PROTOCOLS

We continue by building on the two-party rational framework of Chapter 6, and extend

these results into the multiparty setting. A core difficulty when considering more than

two players is the issue of collusion: players forming a coalition to undermine the ideal

goal of the protocol. Collusion is enabled through a player’s ability to communicate

with others, both within and outside of the protocol. Thus, existing frameworks all

impose restrictions on the communication interface in order to prevent players from

colluding, and to preserve equilibria between game descriptions and realized protocols.

In this work, we approach the issue of collusion from the opposite direction, asking if

a meaningful notion of rational security can be achieved when players have access to

point-to-point communication channels. We will demonstrate how to realize rational

cryptographic protocols in practice from abstract game specifications. We argue that

for real world protocols, it must be assumed that players have access to point-to-

point communication channels. Thus, allowing signaling and strategy correlation

becomes unavoidable. We argue that ideal world game descriptions of realizable

protocols should include such communication resources as well, in order to facilitate

the design of protocols in the real world. Our results specify a modified ideal and real

world model that account for the presence of point-to-point communication channels

between players, where security is achieved through the simulation paradigm.

7.1 Introduction

The field of rational cryptography departs from modeling players as either honest

or malicious, and instead models all players as rational utility-maximizing agents:



115

each player chooses those actions that maximize their utility function µ(·), which

expresses their preferences over outcomes. All players may arbitrarily depart from

the protocol specification if doing so is a utility-maximizing strategy. This approach

to modeling removes the strong assumption of the semi-honest model: that honest

players follow the protocol specification, regardless of whether or not it is in their

best interest. By considering all players as rational agents, the standard properties of

cryptographic protocols (e.g., privacy, correctness and fairness) are modeled through

the utility functions of the players. Security of the protocol is then deduced from

whether or not the stable equilibrium of the original game specification is reachable

given the players’ utility functions.

In secure multiparty computation (SMPC), the security of protocols are demon-

strated through the simulation paradigm. Define an ideal protocol for computing

a functionality f that invokes an incorruptible and universally trusted third party

(TTP). Similarly, define a real protocol ⇡ for computing f where no TTP exists.

Security is established if an adversary A in the real model has no advantage over a

simulator S in the ideal model [4].

A major obstacle when defining security for rational multiparty protocols is the

potential for players to form coalitions, colluding to undermine the security of the

protocol. The strongest result, by Izmalkov et al. [64], allows any function to be com-

puted securely by rational players using the approach of Goldreich et al. [4]. Although

a universal result, it relies on strong assumptions including forced actions and phys-

ical primitives. A weaker notion, referred to as collusion-free computation [84–86],

removes the ability of players to communicate additional information subliminally

through the protocol communication resources. The result relies on a trusted me-

diator at the center of a star network topology, where all messages pass through

the mediator and are re-randomized in order to prevent steganographic communi-
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cation between the players. This result relies on adversarial independence, where

simulators and adversaries are disallowed communication in the protocol. However,

a collusion-free protocol may still cause issues when executed as part of a larger pro-

tocol. For example, the collusion-free protocols of Izmalkov et al. [64, 86] provide

no guarantees when all players are malicious. This observation led to the work of

Alwen et al. [87], where communication restrictions are further weakened to achieve

collusion-preserving computation, which preserves any potential for collusion present

in the original game specification. Although this result removes the requirement of a

trusted mediator, it rules out a large class of communication resources (e.g., point-to-

point and broadcast channels). Kamara et al. [88] consider a setting where adversaries

have the capability to communicate additional information during protocol execution,

yet choose to be non-colluding. Fuchsbauer et al. [22] give constructions under stan-

dard communication channels by forcing parties to send only unique messages as part

of the protocol. Thus, collusion within the protocol is avoided, but communication

outside of the protocol execution still facilitates collusion.

From this collection of work, addressing the issue of collusion appears to require

strong limitations on the type of communication resources granted to players. As the

general goal of rational cryptography is to provide a more realistic view of how players

behave in cryptographic protocols, we consider what can be achieved when players

have access to point-to-point communication channels - an unavoidable aspect in real

world applications. Thus, in this work we define a security model where players may

communicate information over point-to-point channels both inside and outside the

protocol execution.

Our work proposes a new security framework for rational agents that models player

access to point-to-point communication channels in the ideal world model. From this,

we describe how to demonstrate the security of protocols in a real world model that
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implements games specified in our modified ideal world model. We note that imposing

restrictions on the ideal world to capture unavoidable behavior exists currently in the

cryptographic literature: it is a core feature of the malicious model, which extends the

semi-honest model to consider more powerful adversaries. In the malicious setting,

the ideal world must capture the ability of an adversary to coordinate the actions

and inputs of players it corrupts, and force aborts during protocol execution; these

actions are unavoidable in the presence of a monolithic malicious adversary. Our

model necessarily limits the class of games that may be modeled in the ideal world

formulation of our framework, as point-to-point communication channels must exist

in the original game. Our work differs from existing formulations, which attempt to

realize all games at the expense of restricting the communication interface available

to players.

Throughout the remainder of the introduction, we argue that when point-to-point

communication channels are unavoidable, it is meaningful to consider what games

are realizable in their presence. We demonstrate that a non-trivial class of games

constructed in our modified ideal world model have realizable implementations in

the real world model through the Signaling game in Subsection 7.1.2, and the classic

prisoner’s dilemma in Section 7.2. Our technical contribution, a security model for

realizing protocols from game specifications in the presence of point-to-point com-

munication channels, is given in Section 7.3. The power of our model relative to

others is first demonstrated on the Prisoners’ Dilemma in Section 7.4. Finally, a full

proof of security for the rational secret sharing protocol of Halpern and Teague [23]

is given in Section 7.5, which is inadmissible under existing frameworks due to the

presence of point-to-point communication channels. These examples demonstrate the

key contribution of our model, which is less restrictive than prior work yet is able to

correctly model the games’ equilibria when played in the real world.
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7.1.1 Local Adversaries

Translating the standard simulation paradigm to the game theoretic setting of

rational cryptography requires addressing how adversaries should be modeled. In

the original formulation, a centralized semi-honest or malicious adversary corrupts

a subset of the players. However, rational cryptography makes no such distinction1

between honest and corrupted players, and assumes all players are rational and acting

to maximize their local utility function. Thus, translating the concept of an adversary

is not immediate. Alwen et al. [87] give a collusion preserving framework where

each player has an associated local adversary. Thus, the monolithic adversary of the

standard model is shattered into an adversary for each individual player. Canetti

et al. [63] argue that a local adversary should be defined for each ordered pair of

players, as this provides a more granular model of the flow of information. Canetti et

al. then demonstrate that the local universal composition (LUC) model can preserve

the incentive structure in games.

We follow this modeling trend of shattering the monolithic adversary A into a

set of local adversaries A = {Ai}i2[1...n] such that each player Pi 2 P is associated

with adversary Ai. Rather than considering local adversaries that "corrupt" their

associated player Pi, we simply require that the adversary selects the actions of Pi to

maximize their local utility function µi. Thus, we preserve the assumption in rational

cryptographic protocols that all players are purely rational and bound to a utility

function, rather than remaining honest unless corrupted by a monolithic adversary.
1A mixed model has been proposed by Lysyanskaya et al. [65] where one subset of players are
arbitrarily malicious, and the other subset are utility-maximizing rational agents.
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7.1.2 Communication Resources

A core issue with existing work is how communication resources are modeled in

game descriptions. In order to prevent players from signaling information or coor-

dinating their actions, available communication resources are tightly restricted. For

example, Izmalkov et al. [64] propose rational secure computation where only those

equilibria in the game description exist in the realized protocol. However, this result

comes at the cost of requiring forced actions and physical primitives such as opaque

envelopes and ballot boxes2. Although not impossible to realize, in practice it has

limited applicability.

In the ideal world model of secure multiparty computation, a protocol is viewed as

an interaction between a set of players and a universally trusted third party (TTP).

An ideal computation of a function has each player send their private input to the

TTP, who computes the function and returns the results to each player. Restricting

communication resources is not necessary, as players are assumed to be mutually

distrustful. Further, any collusion between players is modeled through a monolithic

adversary A that coordinates the actions of the players it corrupts.

In order to implement arbitrary games as protocols, strict notions of privacy

preservation and the prevention of signaling and correlation must be satisfied. Ar-

bitrary game specifications may impose restrictions on the communication resources

available to players. Thus, the corresponding protocol implementation must not allow

players to communicate more information than is possible in the ideal game specifica-

tion. We briefly review the characteristics a model for implementing arbitrary games

must satisfy3. We make the argument that even if a protocol satisfies all of these

characteristics, it is likely to fall short of satisfying the ideal world model: communi-
2This result is a direct application of the GMW protocol [4].
3The ECRYPT summary report [89] on rational cryptographic protocols provides background on
modeling techniques used to address privacy, signaling, and correlated actions.
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cation between players outside of the protocol is unavoidable in real world settings.

Thus, the model we present is not bound to satisfy these restrictions, and is a more

accurate representation of what is achievable for protocols executed in the real world.

Privacy

A protocol ⇡ implementing an arbitrary game � must preserve both pre-game pri-

vacy and post-game privacy in addition to preserving the equilibrium of �. The notion

of pre-game privacy ensures that the private input of each party is not revealed, as this

will affect the actions of other parties. However, protocols implementing arbitrary

games must also preserve the notion of post-game privacy, where nothing beyond the

intended result (and what can be inferred from this) is revealed. This notion is neces-

sary so that the equilibria of future games are not perturbed by information revealed

in previous games.

Signaling

Similar to the notions of pre- and post-game privacy are the notions of pre-game

signaling and post-game signaling. The ability to signal other players allows protocol

participants to coordinate their actions to achieve a higher payoff. For example,

consider two players A and B with inputs a and b. The payoff function is defined as

⇧(�)

..
= a� b, and described in Table 7.1.

If A or B can signal even a single bit to the other, each will receive a payoff of 1

as opposed to an expected payoff of 1

2

. Thus, similar to the restriction on privacy,

preventing pre- and post-game signaling is necessary to preserve the equilibria of

individual and future games when constructing protocols for arbitrary games.
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Table 7.1: Signaling Game

A sets a = 1 A sets a = 0

B sets b = 1 (0,0) (1,1)
B sets b = 0 (1,1) (0,0)

The signaling game specification can be formulated under existing frameworks

as a protocol, and demonstrated to preserve the mixed equilibrium of the original

game. Yet by ignoring the ability of players to communicate outside of the protocol,

the protocol formulation is invalidated in real world settings: players will collude

to achieve a payoff of 1, rather than the expected payoff of 1

2

of the original game

specification.

We only consider those game specifications that allow point-to-point communica-

tion, as these channels are unavoidable in the real world. Thus, our model correctly

predicts a payoff of 1 for players in the signaling game, as point-to-point communica-

tion channels allow signaling.

Correlated Actions

Correlated actions are similar to signaling, but allow parties to coordinate ac-

tions without exchanging information. This is usually accomplished through a shared

value, such as a common reference string (CRS). The parties need not distribute in-

formation, but rather rely on the shared CRS to coordinate their actions. As with

signaling, protocol constructions for arbitrary games must prevent pre- and post-game

correlation to preserve equilibria in local as well as future games.
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Table 7.2: Prisoner’s Dilemma Game

A Remains Silent A Confesses

B Remains Silent (-1,-1) (0,-3)
B Confesses (-3,0) (-2,-2)

7.2 Prisoner’s Dilemma

As a classic example, we consider the Prisoner’s Dilemma4: a game between two

suspects A and B that have been accused of committing both a principal and lesser

crime. The Authority has sufficient evidence to convict both A and B on the lesser

crime, punishable by 1 year in prison. However, there is insufficient evidence to

convict A or B on the principal crime. The Authority separates A and B, and offers

the following proposal: confess and serve no time while your partner serves 3 years

in prison. Players A and B are then subject to the following dilemma:

1. If both A and B remain silent, they will each be convicted on the lesser crime

and serve 1 year in prison.

2. If one confesses while the other remains silent, the confessor is set free while the

other serves 3 years in prison.

3. If both A and B confess, each will serve 2 years in prison.

From the player payoffs listed in Table 7.2, note that each player maximizes their

utility by confessing to the principal crime regardless of the strategy of their partner.

We use this example to illustrate the necessity of removing monolithic adversaries,

as well as how communication assumptions should be formulated in the ideal game
4The concept was originally proposed by Flood and Dresher while working at the RAND corporation,
and is described in detail by Poundstone [90].
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description. Note that the original ideal game specification of the prisoner’s dilemma

requires that the suspects A and B are physically separated: thus unable to commu-

nicate or otherwise coordinate their actions. However, we will construct a modified

formulation in the presence of point-to-point communication channels with an equiv-

alent equilibrium to the original formulation under our proposed model.

7.2.1 Monolithic Adversaries

Traditionally, cryptographic protocols are analyzed with respect to their resilience

to a monolithic adversary A corrupting some subset of the players. Protocol resilience

to adversarial corruption is quantified by the fraction of players that may be corrupted

before the protocol security is violated.

In the game theoretic setting of rational cryptography, this model has been called

into question by Alwen et al. [87] and Canetti et al. [63]. The goal of rational cryp-

tography is to model each player as bound to their local utility function, rather than

controlled by a monolithic adversary with a global utility function. The monolithic

adversary in both of their models is shattered into a set of local adversaries unique to

each player. Removing the monolithic adversary in favor of a set of local adversaries

is critical to preserving game theoretic equilibria. In the running example of the

Prisoner’s Dilemma, consider the case where A corrupts both A and B. As A controls

both players, A and B may be forced to remain silent and achieve payoff (�1,�1).
However, consider the case where A (resp. B) has a local adversary A

A

(resp. A
B

):

as A
A

is bound to the utility function µ
A

(·) of A, A
A

maximizes µ
A

(·) by confessing

as in the ideal specification of the game. An identical argument holds for A
B

as well.

Thus, a monolithic adversary is capable of introducing a stable collusion equilibrium

that does not exist in the ideal game specification, whereas the local adversary model

preserves the original incentive structure.
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7.2.2 Realistic Communication Model

To prevent pre- and post-game signaling and strategy correlation, many rational

cryptographic frameworks impose strong restrictions on the communication resources

available to players. This issue is most pronounced in the multiparty setting, where

communication resources may enable collusion. To prevent communication resources

from perturbing the equilibria of the ideal world game, existing constructions re-

quire forced player action and physical primitives [64], trusted mediators and forced

broadcast channels [85], as well as the cooperation of adversarial players to deliver

messages [87].

While these results provide strong guarantees under restrictive communication

resource assumptions, the security guarantees are with respect to the protocol only.

That is, assuming players may only interact through the protocol and its communi-

cation resources, the equilibria of the ideal world game is preserved. However, we

argue that this results in a false sense of security for protocols realized in the real

world, where players typically have access to point-to-point communication channels

- undermining the strict communication assumptions of the protocol.

Our example of the prisoner’s dilemma illustrates a salient point: the necessary

and sufficient condition for preserving the equilibrium of the original formulation is

the ability of A and B to privately communicate with the Authority. The origi-

nal game specification requires the two players A and B to be physically separated,

and thus unable to communicate. However, the key to preserving the equilibrium

(confess, confess) of the original game � only requires preventing A and B from ob-

serving their interaction with the Authority. Consider a modified game ¯

� where

all players {A, B, Authority} 2 P have access to a point-to-point communication re-

source R. As long as the communication links R
A,Authority, RB,Authority are private,

the original equilibrium is preserved despite the presence of point-to-point communi-
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cation channels. In game theoretic terms, communication between A and B through

R
A,B is considered cheap talk, as both A and B will claim to play silent, yet as utility

maximizing agents they choose to confess, which strictly dominates silent. As nei-

ther A nor B can observe the message sent by the other to Authority, the coalition

is unstable and disintegrates despite the presence of point-to-point communication

channels.

7.3 Our Contribution

We argue that ideal world protocols should assume that players have the ability

to communicate over point-to-point channels. As in the standard SMPC ideal world

model, players may not wish to communicate due to mutual distrust. However,

the option to do so should be part of the model, as this is unavoidable in the real

world. Thus, we present a modified ideal world model capturing the presence of

point-to-point communication channels between all players. Specifically, we answer

the following questions:

1. How is security formalized when all players are rational and have access to

point-to-point communication channels?

2. What benefits result from weakening the security guarantees of the standard

malicious model by considering rational players with local adversaries?

7.3.1 Unstable Coalitions

A powerful aspect of the rational cryptographic setting with local adversaries is

the ability to design protocols where coalitions are unstable. As each player has a local

adversary that selects their actions in order to maximize a utility function, protocols

may be designed to incentivize players to leave coalitions [91]. This benefit of modeling
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each player as an independently rational agent is frequently overlooked, and allows

game equilibria to be preserved despite the presence of point-to-point communication

channels. We have illustrated the power of unstable coalitions through our example of

the prisoner’s dilemma. We now consider coalition stability in the setting of rational

secret sharing, as it is the most familiar example of a rational cryptographic protocol.

Rational Secret Sharing

Candidate definitions for achieving security against rational agents should ac-

curately model well-studied problems in rational cryptography. The most familiar

rational cryptographic protocol is rational secret sharing [22, 24, 25, 32, 35, 81]. The

goal of threshold secret sharing is to split a secret among n parties such that any k

shares are sufficient to recover the secret value, using a scheme such as the polynomial

interpolation approach proposed by Shamir [82]. Rational secret sharing, introduced

by Halpern and Teague [23], is particularly concerned with the process of recovering

the secret from the shares5. As noted by Halpern et al. [23], rational players’ utility

functions are assumed to value exclusivity, where preference is given to learning the

output of the function while preventing other players from doing so. Under this as-

sumption, no party has any incentive to distribute their share to the other parties,

which destabilizes coalition formation. The equilibrium is to wait for other players

to distribute their shares, as this is the only action that increases a player’s utility

function. Thus, a player that does not distribute their share has the potential to be

the exclusive player to recover the secret.

The authors demonstrate that this implies no deterministic protocol exists where

rational parties are willing to disseminate their shares to other players. Their ran-
5Maleka et al. [92] consider rational secret sharing in the context of repeated games, and Nojoumian
et al. [78] consider the repeated game setting from a socio-rational perspective where player reputa-
tion is important.
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domized protocol is a modified game where players are distributed a set of shares,

where only one share is correct. In each round k, players distribute their shares which

evaluate to either the secret or a default value ?. The solution relies on the fact that

parties are unaware whether the current round k is terminal (k⇤, allowing the secret to

be recovered), or merely a “test” round k 6= k⇤ (where the secret cannot be recovered,

but players who do not distribute shares are caught as cheaters). By choosing k⇤ from

a geometric distribution, as in Groce et al. [32], cheating players that choose strategy

� =? when k 6= k⇤ are caught and the game may be terminated. Thus, players now

have an incentive to distribute their share, as playing ? only yields positive utility

when k = k⇤.

A candidate security definition should accept this probabilistic protocol for ratio-

nal secret sharing as secure against rational agents. However, the strong restrictions

on communication channels imposed by existing work preclude the above protocol

from satisfying their security definitions, despite refinements considering the problem

under standard communication models [17, 19, 22, 26]. That is, the rational secret

sharing protocol of Halpern and Teague [23] assumes players have access to a non-

rushing broadcast channel. This clearly violates the assumptions of models assuming

physical primitives [64], and even fails to satisfy the weakest security definition that

has been proposed: collusion-preserving computation [87]. Ideally, the original ra-

tional secret sharing protocol of Halpern and Teague should be demonstrably secure

against rational agents under a general security framework. Our framework allows

point-to-point communication in the ideal model, and thus is able to accurately model

the original solution to rational secret sharing, which we demonstrate in Section 7.5.
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7.3.2 Adversarial Model

Traditionally, an adversary A is viewed as a monolithic entity with a specified

computational complexity and ability to "corrupt" players in a static or dynamic

fashion. In our model, we consider all players to have the ability to act in an adver-

sarial manner. Thus, rather than considering a monolithic adversary A, we endow

each player P 2 P with a local adversary A
P

. The adversary is bound to the player’s

utility function µ
P

(·) and selects actions for P in order to maximize µ
P

(·). Note that

as we bind player actions to a local adversary seeking to maximize a utility function,

we cannot bound the number of players that deviate from the protocol. This is an

unavoidable consequence of modeling players as rational agents; they select strategies

to maximize a local utility function and follow the protocol only when doing so is

advantageous. As cryptographic protocols typically require a number of rounds of

interaction, we allow the rational players to update their strategy based on observa-

tions throughout the game �. Thus, we assume each local adversary is mobile [93],

and may choose to deviate or follow the protocol at each round in a dynamic fash-

ion. Additionally, players may choose probabilistic strategies6, so we must introduce

a random tape r
P

for each player P. Thus, each local adversary is adaptive, mobile,

probabilistic, malicious, runs in probabilistic polynomial-time (PPT) and is presumed

rational: bound to the player’s local utility function.

Given the above definition of adversaries, the following actions are unavoidable:

• Refusal to Participate: Players may refuse to participate in the protocol.

• Input Substitution: Players may supply an input to the protocol different

from their true input.

• Premature Abort: Players may abort the protocol prior to completion.
6In a game theoretic setting, such strategies are referred to as mixed.
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• Collusion: Players may privately communicate over point-to-point communi-

cation channels, and collude to influence the protocol execution.

Constructions satisfying our definition thus assume that it is advantageous for

players to engage in the protocol, and that this constitutes a utility maximization

strategy with respect to their local utility function.

7.3.3 Ideal World Model

We now formalize the ideal world model, under which an ideal game specification

� is constructed. We assume familiarity with standard game theoretic concepts in our

exposition7. We first define the game specification of � under the extensive form game

representation. In the game theoretic literature, normal form game representation

is generally used for single round games where actions are played simultaneously.

As cryptographic protocols typically proceed in a series of rounds where actions are

played asynchronously, we prefer extensive form game representation, where the ideal

game specification � is represented as a tree. At each node in the game tree, a subset

P ✓ P of the players select and simultaneously play an action.

Definition 7.3.1 An extensive form game � consists of:

1. A finite set P = {Pi}ni=1

of players.

2. A (finite) set of sequences H called the history. The empty sequence ; is a

member of H. We let k denote the current decision node. If (ak)k=1,...,K 2 H
and L < K then (ak)k=1,...,L 2 H. If an infinite sequence (ak)1k=1

satisfies

(ak)k=1,...,L 2 H for every positive integer L then (ak)1k=1

2 H. A history

7For a proper introduction to the subject, Katz [12] describes the current effort to combine game
theoretic and cryptographic concepts, while Osborne et al. [13] and Fudenberg et al. [40] give a
complete introduction to game theory.
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(ak)k=1,...,K 2 H is a terminal history if it is infinite or if there is no aK+1

such that (ak)k=1,...,K+1

2 H. The set of actions available after the nonterminal

history h is denoted A(h) = {a : (h, a) 2 H} and the set of terminal histories

is denoted Z. We let Hk denote the history through round k.

3. A player function P that assigns to each nonterminal history (each member of

H/Z) a member of P[{nature}. When P (h) = nature, then nature determines

the action taken after history h.

4. For each player Pi 2 P a partition Ii of {h 2 H : P (h) = i} with the property

that A(h) = A(h0

) whenever h and h0 are in the same member of the partition.

For Ii 2 Ii we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any

h 2 Ii. Thus, Ii is the information partition of player i, while the set Ii 2 Ii is

an information set of player i.

5. For each player Pi 2 P a preference relation -i on lotteries8 over Z that can

be represented as the expected value of a payoff function defined on Z.

Throughout, we replace the preference relation -i by a utility function µi : A! R,

such that µi(a) � µi(b) when b -i a.

We make the following modeling choices:

• Extensive Form Games: The ideal game specification � is described by a

game tree in extensive form representation.

• Imperfect Information: A game specification is said to have imperfect in-

formation if players may have non-singleton information sets Ii 2 Ii. That is,

at a given round in the game, players may be unaware of the move selected by
8Even if all actions are deterministic, moves by nature can induce a probability distribution over
the set of terminal histories.
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the previous player(s). Thus, their information set may contain more than one

node in the game tree at any given round.

• Local Simulators: Each player Pi 2 P in the ideal model has a local simulator

Si that forces P to play those actions that maximize µi(·), the utility function

of player Pi. Each simulator Si has an associated adversary Ai in the real world

execution model, denoted Si = Sim(Ai).

• Point-to-Point Communication Resources: Each player pair (Pi, Pj)i 6=j 2
P has a secure point-to-point communication resource Rij.

As we consider all players to be rational agents, we model the ideal world protocol

as a game specification � that aims to achieve an equilibrium. The ideal game spec-

ification is an interaction between a set of n players P = {Pi}ni=1

, their local utility

functions ~µ = {µi}ni=1

and action sets Ai, which contains those actions playable by

player Pi. Frequently, a deterministic choice of an action a 2 Ai will not yield a Nash

equilibrium. Thus, we allow players to choose a strategy �i: a probability distribution

over Ai. The standard equilibrium concept in the rational cryptographic literature is

a computational Nash equilibrium [15–19], given in Definition 3.1.3. Intuitively, no

player Pi has an incentive to deviate from strategy �i given that every other player

Pj selects their equilibrium strategy �j. The definition of a computational Nash equi-

libria adds a negligible term negl(�) with respect to a security parameter �. This is

necessary in the computational setting, as security rests on the premise that breaking

cryptographic primitives occurs with only negligible probability. Thus, this notion

must be incorporated into the equilibrium definition. Although computational Nash

equilibria are the weakest of the equilibrium concepts described in the rational cryp-

tographic literature, preserving only computational Nash equilibria in our framework

is sufficient for extensions to more powerful equilibrium concepts.
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The standard ideal world model has players interact with an incorruptible trusted

third party (TTP) that accepts player inputs, computes the ideal functionality f ,

and distributes the output to players. In the setting of rational cryptography, we will

consider a Mediator that enforces the ideal game specification.

Input Distribution: Each player Pi 2 P receives its input xi, random coins
ri and auxiliary inputa zi. Each player has the option
of inputting a different input x̄i 6= xi, as this is unavoid-
able.

Game Execution: The Mediator allows the subset of players P ✓ P speci-
fied at each node of the game specification � to simulta-
neously play their actions. Note that games where only
a single player moves at each node (asynchronous play)
are fully supported, as this is modeled by setting the
subset P = {Pi}.

Payoff Assignment: If the current node k is terminal (i.e., k 2 Z), then the
Mediator distributes the payoffs associated with k to all
players Pi 2 P .

aAn auxiliary input is provided to all players to model additional information available to them [5].

Protocol 7.3.1: Ideal World Game Execution

Definition 7.3.2 Let � represent the ideal game specification in extensive form rep-

resentation, R a point-to-point communication resource available between all pairs of

players in P, S the set of local simulators, ~µ the set of player utility functions and

z any auxiliary information provided to a player. We denote by ~̄x the set of inputs

for players (which may differ from the set of their true inputs ~x) and by r the ran-

dom coins provided to a player. We then define the ith output of an ideal world

execution for players P in the presence of local simulators S as:

n

IDEAL

(i2[1...n])
�,R,P,S,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤
, { ~�⇤, I} (7.1)
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where ~�⇤ is the equilibrium in the ideal game specification �, S = {Si}i2[1...n] is the

set of simulators such that Si = Sim(Ai), I is the information partition set for P,

|x̄i| = |x̄j|8i 6= j and |z| = poly(|x̄i|).

This ideal world model necessarily limits the class of games that may be realized, as

any game specification that disallows point-to-point communication channels between

all parties cannot be modeled in the presence of R. However, we will demonstrate

that a broad class of games that initially appear inadmissible under our model are

realizable through minor modifications to the game specification, and which preserve

the equilibria of the original game.

7.3.4 Real World Model

We now introduce the real world model protocol ⇧ that implements the ideal

game specification �. In order to translate ideal game specifications into realizable

protocols, we assume the existence of a public key infrastructure (PKI) in the real

world model. That is, we must translate the ideal world point-to-point communication

resource R into an implementation allowing point-to-point private communication

between all players Pi, Pj 2 P during the execution of ⇧. We denote the real world

PKI communication resource by C, where 8(Pi, Pj)i 6=j 2 P , 9Cij 2 C.

In the real world execution, each player Pi has an associated local adversary Ai,

rather than a simulator Si as in the ideal world game. The local adversary Ai selects

the actions of Pi to maximize the player’s local utility function µi. Similarly, in the

real world execution there is no Mediator, as the goal is to remove reliance on trusted

third parties.
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Input Distribution: Each player Pi 2 P receives its input xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different input x̄i 6= xi, as this is unavoid-
able.

Protocol Execution: The execution of ⇧ proceeds in a series of rounds, where
at each round a subset of players P ✓ P specified at each
node play their actions. Each player pair (Pi, Pj)i 6=j 2 P
is connected by a private authenticated point-to-point
communication channel Cij, and may exchange messages
throughout the protocol execution.

Payoff Assignment: If the current node k is terminal (i.e., k 2 Z), then each
player Pi 2 P receives its associated payoff.

Protocol 7.3.2: Real World Protocol Execution

Definition 7.3.3 Let ⇧ represent the real world protocol implementing ⇧, C a point-

to-point authenticated and private PKI communication resource available between all

pairs of players in P, A the set of local adversaries, ~µ the set of player utility functions

and z any auxiliary information provided to a player. We denote by ~̄x the set of inputs

for players (which may differ from the set of their true inputs ~x) and by r the random

coins provided to a player. We then define the ith output of a real world execution

for players P in the presence of local adversaries A as:

n

REAL

(i2[1...n])
⇧,C,P,A,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤
, { ~�⇤, I} (7.2)

where ~�⇤ is the equilibrium in the real world protocol ⇧, I is the information partition

set for P, |x̄i| = |x̄j|8i 6= j and |z| = poly(|x̄i|).
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7.3.5 Establishing the Security of Realized Protocols

The security of protocols is established by demonstrating that the real and ideal

world distribution ensembles are computationally indistinguishable9. This guarantees

that any attack available to an adversary A in the real model is also available to a

simulator S in the ideal model.

Definition 7.3.4 (Security against Rational Adversaries) Let � be an n-player ideal

game specification and ⇧ be an n-party real world protocol. We say that ⇧ securely

realizes � if there exists a set {Simi}i2[1...n] of PPT transformations admissible in the

ideal model such that for all PPT rational adversaries A = {Ai}i2[1...n] admissible in

the real model, for all ~x 2 ({0, 1}⇤)n and ~z 2 ({0, 1}⇤)n, and for all i 2 [1 . . . n],

n

IDEAL

(i2[1...n])
�,R,P,S,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤
c⌘
n

REAL

(i2[1...n])
⇧,C,P,A,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤

where S = {Si}i2[1...n] is the set of simulators such that Si = Sim(Ai), I is the

information partition set for P and r is chosen uniformly at random.

Thus, to establish the security of a realized protocol ⇧, we must construct a

simulator Si for all players Pi 2 P such that for all probabilistic polynomial-time

distinguishers D, the distributions of S in the ideal world and A in the real world can

only be differentiated with probability negligibly greater than 1

2

.

7.4 Demonstrating the Model on the Prisoner’s Dilemma

To illustrate the power of our model, we return to our running example of the

prisoner’s dilemma. We demonstrate that, despite the requirement of physical sep-
9That is, any probabilistic polynomial-time (PPT) distinguisher D cannot distinguish between an
execution of � in the ideal world model and an execution of ⇧ in the real world model with probability
non-negligibly greater than 1

2 .
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aration (and, consequently, lack of communication between players) in the original

game specification, we are able to construct a modified game specification that is

admissible in the ideal world model, and realizable in the real world model under our

security definition.

7.4.1 Ideal World Game Specification

The ideal world game � is an interaction between a set of players P such that

P = {A, B, Authority}, where A (resp. B) has access only to a communication resource

R
A,Authority (resp. R

A,Authority). That is, A and B are physically separated and, thus,

unable to communicate. In the original game �, the strategy ~�⇤

= {�⇤

A

= confess, �⇤

B

=

confess} is the sole Nash equilibrium. However, consider a modified game specification

¯

� where there exists a communication resource R
A,B enabling A and B to communicate.

We now demonstrate that ¯

� is admissible in our ideal world definition.

Let ¯

� be an ideal game specification, with player set P = {A, B, Authority} and

associated set of local simulators C = {C
A

, C
B

, C
Authority

} that select actions for players

to maximize their local utility functions. We define the resource set R as R =

{R
A,Authority,RB,Authority,RA,B}, and players A and B have identical utility functions

defined as follows:

µi(�i, �j) 7!

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�1 : �i = silent, �j = silent

0 : �i = silent, �j = confess

�3 : �i = confess, �j = silent

�2 : �i = confess, �j = confess

(7.3)

Clearly ¯

� is admissible under the ideal world model, as all players have access to

a point-to-point communication resource R. The modified ideal world game ¯

� of the

prisoner’s dilemma proceeds as follows:
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Input Distribution: Each player Pi 2 P receives its input xi, random coins
ri and auxiliary input zi. Each player has the option
of inputting a different input x̄i 6= xi or aborting the
protocol at any time, as this is unavoidable.

"Cheap Talk": Players A and B are free to communicate over R
A,B, and

each may try to convince the other that they will set
� = silent. However, as R

A,Authority (resp. R
B,Authority)

is private, neither is able to observe the message sent
to Authority. Thus, this communication is considered
"cheap talk", in that it does not affect the strategy se-
lection of the player. The local simulator Si for each
player selects mi = confess, as this maximizes µi.

Game Execution: The Mediator instructs A and B to send a message m
to Authority with their decision, where the message
m 2 {silent, confess}.

Payoff Assignment: After Authority has received m
A

and m
B

, Mediator dis-
tributes the payoffs to A and B.

Protocol 7.4.1: Ideal World Game Execution

It is not difficult to see that the equilibrium in the modified ideal game specification

¯

� is identical to the equilibrium in the original game specification �. That is, despite

the presence of a point-to-point communication channel R
A,B, we achieve the desired

equilibrium of ~�⇤

= {�
A

= confess, �
B

= confess}.
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7.4.2 Real World Protocol Construction

Input Distribution: Each player Pi 2 P receives its input xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different input x̄i 6= xi or aborting at any
time, as this is unavoidable. The payoff for abort is
equivalent to silent, and other players may continue the
protocol execution in the presence of aborts.

"Cheap Talk": Players A and B are free to communicate over C
A,B, and

each may try to convince the other that they will set
� = silent. However, as C

A,Authority (resp. C
B,Authority)

is private, neither is able to observe the message sent
to Authority. Thus, this communication is considered
"cheap talk", in that it does not affect the strategy se-
lection of the player. The local adversary Ai for each
player selects mi = confess as this maximizes µi.

Game Execution: A and B send a message m to Authority with their de-
cision, where m 2 {silent, confess}. Although aborting
(setting m =?) is an option, it is equivalent to setting
m = silent. As players are controlled by an adversary
seeking to maximize their utility function µ as defined
by Equation 7.3, this strategy is never played; setting
m = silent is strictly dominated by setting m = confess.

Payoff Assignment: After Authority has received m
A

and m
B

, A and B re-
ceive the payoffs specified by their local utility functions
as defined in Equation 7.3.

Protocol 7.4.2: Real World Protocol Execution

We now translate the ideal game specification ¯

� to a real world protocol ⇧, and

demonstrate that there exist simulators such that the distribution of the ideal world

game is computationally indistinguishable from the distribution of the real world

protocol execution.

In the real world model, the communication resource R is replaced with a public

key infrastructure C. Each pair of players (Pi, Pj) 2 P has access to a private and

authenticated point-to-point communication channel Cij. Let ⇧ be a real world pro-

tocol, with player set P = {A, B, Authority} and associated set of local adversaries
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A = {A
A

,A
B

,A
Authority

} that select actions for players to maximize their local utility

functions, communication channel set C = {C
A,Authority, CB,Authority, CA,B}, and players

A and B have identical utility functions defined as in Equation 7.3.

Clearly ⇧ is admissible under the real world model, as the PKI infrastructure C
facilitates the point-to-point communication channels between all players. The real

world protocol ⇧ of the prisoner’s dilemma proceeds as in Protocol 7.4.2. Again, the

original equilibrium of ~�⇤

= {�
A

= confess, �
B

= confess} is preserved despite the

presence of the communication channel C.

7.4.3 Demonstrating Protocol ⇧ Security

We use the simulation paradigm [5] to demonstrate the security of the construction

by proving the distribution of the real world protocol is computationally indistinguish-

able from the ideal world distribution.

Theorem 7.4.1 (Security of ⇧ against Rational Adversaries) Let ¯

� be the n-party

ideal world game specification of Protocol 7.4.1 and let ⇧ be the n-party real world

execution of Protocol 7.4.2. There exists a set {Simi}i2[1...n] of PPT transforma-

tions admissible in the ideal model such that for all PPT rational adversaries A =

{A
1

, . . . ,An} admissible in the real model, for all ~x 2 ({0, 1}⇤)n and ~z 2 ({0, 1}⇤)n,
and for all i 2 [1 . . . n],

n

IDEAL

(i2[1...n])
¯

�,R,P,S,~µ,z
(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤
c⌘
n

REAL

(i2[1...n])
⇧,C,P,A,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤

establishing that ⇧ securely realizes ¯

�.

Proof To prove the security of ⇧ against the set of rational adversaries A =

{A
A

,A
B

,A
Authority

} we must construct a set of simulators S = {S
A

,S
B

,S
Authority

}
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whose output in the ideal game specification ¯

� is indistinguishable from the output of

A in the real world execution. To achieve this, we construct simulators Si = Sim(Ai)

that simulate all messages and the output of Ai in the real world execution of ⇧,

and is thus able to return these as its own. The simulated messages and output

returned by Si must be computationally indistinguishable such that, for all proba-

bilistic polynomial-time distinguishers D, the probability of differentiating the ideal

world and real world distributions is at most negligibly greater than 1

2

.

Each simulator Si will rely on the private communication resource R to simulate

the messages exchanged and final output produced by Ai acting to maximize the

utility function µi for player Pi. The simulator Si given in Construction 7.4.1 holds

for all players P = {A, B, Authority}.
The construction relies on the computational indistinguishability of the real world

communication channel C from the ideal world private and authenticated communica-

tion resource R. All messages sent by simulators Si 2 S in the ideal world model are

passed over R. In the real world execution, messages are encrypted between players

using the PKI communication resource C. Thus, all probabilistic polynomial-time

distinguishers D are able to distinguish the view of the ideal world execution from

the real world execution with at most probability negligibly greater than 1

2

by the

security of the PKI communication resource C.
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Input Distribution: The simulator Si 2 S is given input xi, random coins ri
and auxiliary input zi

"Cheap Talk": The simulator Si is free to communicate over R
Si,Sj

where i 6= j. If i, j 2 {A, B}, it must simulate the "cheap
talk" between the other player’s adversary Aj. Si uses
its random coins ri to construct a random message m,
and sends m over resource R

Si,Sj . By definition, R is
a private and authenticated point-to-point communica-
tion resource. Thus, the messages sent by the simu-
lator are computationally indistinguishable from those
sent in the real world execution, which are encrypted
under the public key infrastructure communication re-
source C. The local simulator Si for each player selects
mi = confess, as this maximizes µi regardless of the
messages exchanged during this phase.

Game Execution: The simulator Si sends a message m to S
Authority

over
R

Si,SAuthority

with their decision, where the message m 2
{silent, confess}. By definition, R is a private and
authenticated point-to-point communication resource.
Thus, the messages sent by the simulator to S

Authority

are computationally indistinguishable from those sent in
the real world execution, which are encrypted under the
public key infrastructure communication resource C.

Payoff Assignment: After S
Authority

has received m
Si and m

Sj , each simulator
receives the payoff associated with the outcome.

Construction 7.4.1: Construction of Simulator Si

7.5 Demonstrating the Model on Rational Secret Sharing

To illustrate the power of our model, we return to the example of rational secret

sharing. We demonstrate that, despite the presence of point-to-point communication

channels, the original game specification is admissible in our ideal world model, and

realizable in the real world model. This violates the assumptions of existing security

frameworks, which disallow point-to-point communication either within the protocol

execution, outside of the protocol execution, or both.
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7.5.1 Ideal World Game Specification

The ideal world game � is an interaction between a set of players P = {Pi}i2[1...n],
where Pi has access to a point-to-point communication resource R

Pi,Pj8j 6= i. That is,

Pi may privately communicate with any other player Pj. We now demonstrate that �

is admissible in our ideal world definition.

Input Distribution: Each player Pi 2 P receives its input share xi, random
coins ri and auxiliary input zi. Each player has the
option of inputting a different share x̄i 6= xi or aborting
the protocol at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj 2
ˆP over R

Pi,Pj , where ˆP is the set of colluding play-
ers. Proposition 7.5.1 demonstrates that communication
over R is considered "cheap talk" (it does not affect the
strategy selection of the player), and that the local sim-
ulator Si for each player will select ai = reveal, as this
maximizes µi.

Game Execution: The Mediator instructs Pi, 8i 2 n to play their action
ai at each round k, where ai 2 {silent

a, reveal}.
Payoff Assignment: At the terminal round k⇤ where the shares yield the

secret, Mediator distributes the payoffs to Pi 2 P .

aNote that selecting ai = silent is equivalent to aborting.

Protocol 7.5.1: Ideal World Game � Execution

Let � be the ideal game specification for rational secret sharing, with player

set P = {Pi}i2[1...n] and associated set of local simulators S = {Si}i2[1...n] that se-

lect actions for players to maximize their local utility functions, resource set R =

{R
Pi,Pj}8i,i 6=j, and all players Pi 2 P have utility functions defined as

µi(�i) 7!

8

>

>

>

>

<

>

>

>

>

:

(µ++

)(p) : �i = silent, k = k⇤

(µ�

)(1� p) : �i = silent, k 6= k⇤

(µ+

) : �i = reveal

(7.4)
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where µ+ represents positive utility, µ� represents negative utility, and µ++ > µ+ as

players value exclusivity.

Proposition 7.5.1 For all players Pi 2 P in � with utility function defined as µi(�i)

in Equation 7.4, strategy {�⇤

Pi = reveal}
8i2n > {�Pi = silent}

8i2n when p < µ+

µ++

.

Proof In the original rational secret sharing protocol, the strategy ~�⇤

= {�⇤

Pi
=

reveal}
8i2n is the only Nash equilibrium, as the true final round k⇤ (where combining

shares reveals the shared secret) is chosen from a geometric distribution. As the

probability of correctly guessing the final round k⇤ is the parameter p, the expected

utility for �
Pi = silent is at most (µ++

)(p). We set µ++ > µ+, as players are assumed to

value exclusivity (recovering the secret while preventing other players from doing so).

If a player remains silent in any round k < k⇤, they are caught by the other players as a

cheater and excluded from future rounds (receiving negative utility µ�). By choosing

p such that p < µ+

µ++

, we have (µ++

)(p) < µ+ which implies µ
Pi(silent) < µ

Pi(reveal).

Thus revealing the share for each round strictly dominates remaining silent. Players

in our ideal model � may communicate over R and attempt to convince other players

that they will select silent. This provides a greater degree of exclusivity, as only those

colluding players in ˆP ✓ P will recover the secret. However, this communication is

considered cheap talk, as each player maximizes µi by selecting �i = reveal regardless

of the messages sent over R when p < µ+

µ++

.

7.5.2 Real World Protocol Construction

We now translate the ideal game specification � to a real world protocol ⇧, and

demonstrate that there exist simulators such that the distribution of the ideal world

game is computationally indistinguishable from the distribution of the real world

protocol execution.
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In the real world model, the communication resource R is replaced with a public

key infrastructure C. Each pair of players (Pi, Pj) 2 P has access to a private and au-

thenticated point-to-point communication channel Cij. Let ⇧ be a real world protocol,

with player set P = {Pi}i2[1...n] and associated set of local adversaries A = {Ai}i2[1...n]
that select actions for players to maximize their local utility functions, communica-

tion channel set C = {Cij}8i 6=j, and all players have identical utility functions defined

as in Equation 7.4.

Input Distribution: Each player Pi 2 P receives its input share xi, random
coins ri and auxiliary input zi. Each player has the
option of inputting a different share x̄i 6= xi or aborting
the protocol at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj 2
ˆP over C

Pi,Pj , where ˆP is the set of colluding play-
ers. Proposition 7.5.1 demonstrates that communica-
tion over C is considered "cheap talk" (it does not affect
the strategy selection of the player), and that the local
adversary Ai for each player selects ai = reveal, as this
maximizes µi.

Game Execution: Each player Pi 2 P selects and plays their action ai at
each round k, where ai 2 {silent

a, reveal}.
Payoff Assignment: At the terminal round k⇤ where the shares yield the

secret, each player Pi 2 P receives its associated payoff.

aNote that selecting ai = silent is equivalent to aborting.

Protocol 7.5.2: Real World Protocol ⇧ Execution

Clearly ⇧ is admissible under the real world model, as the PKI infrastructure C
facilitates the point-to-point communication channels between all players. The real

world protocol ⇧ for rational secret sharing proceeds as in Protocol 7.5.2. Again, the

original equilibrium of ~�⇤

= {�
Pi = reveal} is preserved despite the presence of the

communication channel C.
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7.5.3 Demonstrating Protocol ⇧ Security

We use the simulation paradigm [5] to demonstrate the security of the construction

by proving the distribution of the real world protocol is computationally indistinguish-

able from the ideal world distribution.

Theorem 7.5.1 (Security of ⇧ against Rational Adversaries) Let � be the n-party

ideal world game specification of Protocol 7.5.1 and let ⇧ be the n-party real world ex-

ecution of Protocol 7.5.2. There exists a set {Simi}i2[1...n] of PPT transformations ad-

missible in the ideal model such that for all PPT rational adversaries A = {Ai}i2[1...n]
admissible in the real model, for all ~x 2 ({0, 1}⇤)n and ~z 2 ({0, 1}⇤)n, and for all

i 2 [1 . . . n],

n

IDEAL

(i2[1...n])
�,R,P,S,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤
c⌘
n

REAL

(i2[1...n])
⇧,C,P,A,~µ,z(�, ~̄x; r)

o

�2N,~̄x,r2{0,1}⇤

establishing that ⇧ securely realizes �.

Proof To prove the security of ⇧ against rational adversaries A = {Ai}i2[1...n] we

must construct a set of simulators S = {Si}i2[1...n] whose output in the ideal game

specification � is indistinguishable from the output of A in the real world execution.
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Input Distribution: The simulator Si 2 S is given input share xi, random
coins ri and auxiliary input zi

"Cheap Talk": The simulator Si is free to communicate over R
Si,Sj

where i 6= j. Si, 8i 6= j must simulate the "cheap
talk" between the other player’s adversary Aj. Si uses
its random coins ri to construct a random message m,
and sends m over resource R

Si,Sj . By definition, R is
a private and authenticated point-to-point communica-
tion resource. Thus, the messages sent by the simu-
lator are computationally indistinguishable from those
sent in the real world execution, which are encrypted
under the public key infrastructure communication re-
source C. The local simulator Si for each player selects
mi = reveal, as this maximizes µi regardless of the mes-
sages exchanged during this phase.

Game Execution: The simulator Si sends a message m to Sj, 8j 6= i over
R

Si,Sj with their decision, where m 2 {silent, reveal}.
By definition, R is a private and authenticated point-
to-point communication resource. Thus, the messages
sent by the simulator to Sj are computationally indis-
tinguishable from those sent in the real world execution,
which are encrypted under the public key infrastructure
communication resource C.

Payoff Assignment: After Pj 2 P , 8j 6= i has received m
Si , each simulator

receives the payoff associated with the outcome.

Construction 7.5.1: Construction of Simulator Si

To achieve this, we construct simulators Si = Sim(Ai) that simulate all messages

and the output of Ai in the real world execution of ⇧, and is thus able to return these

as its own. The simulated messages and output returned by Si must be computation-

ally indistinguishable such that, for all probabilistic polynomial-time distinguishers

D, the probability of differentiating the ideal world and real world distributions is at

most negligibly greater than 1

2

.

Each simulator Si will rely on the private communication resource R to simulate

the messages exchanged and final output produced by Ai acting to maximize the
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utility function µi for player Pi. The simulator Si given in Construction 7.5.1 holds

for all players P = {Pi}i2[1...n].
The construction relies on the computational indistinguishability of the real world

communication channel C from the ideal world private and authenticated communica-

tion resource R. All messages sent by simulators Si 2 S in the ideal world model are

passed over R. In the real world execution, messages are encrypted between players

using the PKI communication resource C. Thus, all probabilistic polynomial-time

distinguishers D are able to distinguish the view of the ideal world execution from

the real world execution with at most probability negligibly greater than 1

2

by the

security of the PKI communication resource C.

7.6 Conclusion

In this chapter, we have proposed a security definition capturing rational crypto-

graphic protocols in the presence of standard point-to-point communication resources.

Rather than limit the communication resources available to players, we answer the

question of how game specifications admissible in an ideal model allowing point-to-

point communication channels may be realized in practice. Thus, the ideal world

model necessarily limits the class of games that are admissible and is not a gen-

eral result. However, we have argued that point-to-point communication channels

are unavoidable in real-world settings, and consequently must be incorporated into

the definition of security. Further, we have demonstrated that not all game specifi-

cations forbidding point-to-point communication are inadmissible under our model.

We presented the transformation for the classic prisoner’s dilemma, which disallows

point-to-point communication through physical assumptions, into a modified game

that is admissible under our model and preserves the original equilibrium. Similarly,

we have demonstrated that the signaling game has an expected payoff of 1 when
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executed in the presence of point-to-point channels, rather than an expected payoff

of 1

2

, a distinction not captured by models that disallow communication outside of

the protocol execution. Finally, we have presented a full security proof for rational

secret sharing under our proposed framework. Although our results are not universal,

we have demonstrated a powerful benefit of our model: assigning local adversaries

may aid mechanism design in destabilizing the formation of coalitions. Thus, there

are tangible benefits from adopting our definition of security against local rational

adversaries in the presence of point-to-point communication resources.
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8 SUMMARY

In this thesis, we have presented a rational cryptographic framework for both the

two-party and multiparty settings. We have demonstrated the necessary and suffi-

cient utility assumptions to achieve privacy, correctness and fairness in game theoretic

terms, as well as removed all restrictions on the communication resources available

to players. We have argued the necessity of allowing point-to-point communication

channels between players, which prior work restricts in an attempt to address col-

lusion. Although we do not restrict the communication resources, our frameworks

accept a non-trivial class of ideal game specifications.

8.1 Summary of Main Results

8.1.1 Separated Classification and Inspection

In Chapter 4, we separate the tasks of classification and inspection in the adversar-

ial classification problem. Although closely related, separating the task of inspection

from the task of classification yields an advantage to a defender. Working against an

active adversary, we apply game theory to make optimal operational decisions for the

inspection policy in the presence of limited resources.

8.1.2 Resolved Game Theoretic Dilemma

In Chapter 5, we resolve a game theoretic dilemma where an auction model’s foun-

dational assumption prevented deployment in real world settings. We demonstrate

that realizable protocols for the auction model are possible by employing crypto-
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graphic primitives, and that the realized protocols satisfy the theoretical model’s

underlying assumptions.

8.1.3 Applied Stronger Equilibrium Concept

In Chapter 6, we propose the computational perfect Bayesian equilibrium (PBE)

concept as a replacement for the widely-used computational Nash equilibrium. We

have argued that PBE is a more realistic equilibrium concept for cryptographic pro-

tocols, which typically proceed in a series of rounds and necessarily represent games

of imperfect information.

8.1.4 Game Theoretic Security Definitions

In Chapter 6, we give definitions of privacy, correctness and fairness purely in game

theoretic terms. From these definitions, we demonstrate the necessary and sufficient

conditions for player utility functions in order to achieve them in protocol design.

8.1.5 Removed Restrictions on Communication Resources

In Chapter 7, we introduce a rational multiparty computation framework that

places no restrictions on the communication resources available to players. Prior

work imposed strong restrictions on the communication resources available to players,

as arbitrary communication enables collusion. However, we have demonstrated that

even ideal game specifications that restrict communication may be translated into

equivalent formulations allowing point-to-point communication. Once admissible in

our proposed ideal model, the ideal game specifications are translated into real world

protocol constructions.
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