18,374 research outputs found

    A Review Approach on various form of Apriori with Association Rule Mining

    Get PDF
    Data mining is a computerized technology that uses complicated algorithms to find relationships in large databases Extensive growth of data gives the motivation to find meaningful patterns among the huge data. Sequential pattern provides us interesting relationships between different items in sequential database. Association Rules Mining (ARM) is a function of DM research domain and arise many researchers interest to design a high efficient algorithm to mine ass ociation rules from transaction database. Association Rule Mining plays a important role in the process of mining data for frequent pattern matching. It is a universal technique which uses to refine the mining techniques. In computer science and data min ing, Apriori is a classic algorithm for learning association rules Apriori algorithm has been vital algorithm in association rule mining. . Apriori alg orithm - a realization of frequent pattern matching based on support and confidence measures produced exc ellent results in various fields. Main idea of this algorithm is to find useful patterns between different set of data. It is a simple algorithm yet having man y drawbacks. Many researches have been done for the improvement of this algorithm. This paper sho ws a complete survey on few good improved approaches of Apriori algorithm. This will be really very helpful for the upcoming researchers to find some new ideas from these approaches. The paper below summarizes the basic methodology of association rules alo ng with the mining association algorithms. The algorithms include the most basic Apriori algorithm along with other algorithms such as AprioriTi d, AprioriHybrid

    A Framework for High-Accuracy Privacy-Preserving Mining

    Full text link
    To preserve client privacy in the data mining process, a variety of techniques based on random perturbation of data records have been proposed recently. In this paper, we present a generalized matrix-theoretic model of random perturbation, which facilitates a systematic approach to the design of perturbation mechanisms for privacy-preserving mining. Specifically, we demonstrate that (a) the prior techniques differ only in their settings for the model parameters, and (b) through appropriate choice of parameter settings, we can derive new perturbation techniques that provide highly accurate mining results even under strict privacy guarantees. We also propose a novel perturbation mechanism wherein the model parameters are themselves characterized as random variables, and demonstrate that this feature provides significant improvements in privacy at a very marginal cost in accuracy. While our model is valid for random-perturbation-based privacy-preserving mining in general, we specifically evaluate its utility here with regard to frequent-itemset mining on a variety of real datasets. The experimental results indicate that our mechanisms incur substantially lower identity and support errors as compared to the prior techniques

    Dependence relationships between Gene Ontology terms based on TIGR gene product annotations

    Get PDF
    The Gene Ontology is an important tool for the representation and processing of information about gene products and functions. It provides controlled vocabularies for the designations of cellular components, molecular functions, and biological processes used in the annotation of genes and gene products. These constitute three separate ontologies, of cellular components), molecular functions and biological processes, respectively. The question we address here is: how are the terms in these three separate ontologies related to each other? We use statistical methods and formal ontological principles as a first step towards finding answers to this question

    Categorization of interestingness measures for knowledge extraction

    Full text link
    Finding interesting association rules is an important and active research field in data mining. The algorithms of the Apriori family are based on two rule extraction measures, support and confidence. Although these two measures have the virtue of being algorithmically fast, they generate a prohibitive number of rules most of which are redundant and irrelevant. It is therefore necessary to use further measures which filter uninteresting rules. Many synthesis studies were then realized on the interestingness measures according to several points of view. Different reported studies have been carried out to identify "good" properties of rule extraction measures and these properties have been assessed on 61 measures. The purpose of this paper is twofold. First to extend the number of the measures and properties to be studied, in addition to the formalization of the properties proposed in the literature. Second, in the light of this formal study, to categorize the studied measures. This paper leads then to identify categories of measures in order to help the users to efficiently select an appropriate measure by choosing one or more measure(s) during the knowledge extraction process. The properties evaluation on the 61 measures has enabled us to identify 7 classes of measures, classes that we obtained using two different clustering techniques.Comment: 34 pages, 4 figure

    A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling

    Full text link
    Randomized experiments have been critical tools of decision making for decades. However, subjects can show significant heterogeneity in response to treatments in many important applications. Therefore it is not enough to simply know which treatment is optimal for the entire population. What we need is a model that correctly customize treatment assignment base on subject characteristics. The problem of constructing such models from randomized experiments data is known as Uplift Modeling in the literature. Many algorithms have been proposed for uplift modeling and some have generated promising results on various data sets. Yet little is known about the theoretical properties of these algorithms. In this paper, we propose a new tree-based ensemble algorithm for uplift modeling. Experiments show that our algorithm can achieve competitive results on both synthetic and industry-provided data. In addition, by properly tuning the "node size" parameter, our algorithm is proved to be consistent under mild regularity conditions. This is the first consistent algorithm for uplift modeling that we are aware of.Comment: Accepted by 2017 IEEE International Conference on Data Minin
    corecore