73,603 research outputs found

    Minimal realizations of linear systems: The "shortest basis" approach

    Get PDF
    Given a controllable discrete-time linear system C, a shortest basis for C is a set of linearly independent generators for C with the least possible lengths. A basis B is a shortest basis if and only if it has the predictable span property (i.e., has the predictable delay and degree properties, and is non-catastrophic), or alternatively if and only if it has the subsystem basis property (for any interval J, the generators in B whose span is in J is a basis for the subsystem C_J). The dimensions of the minimal state spaces and minimal transition spaces of C are simply the numbers of generators in a shortest basis B that are active at any given state or symbol time, respectively. A minimal linear realization for C in controller canonical form follows directly from a shortest basis for C, and a minimal linear realization for C in observer canonical form follows directly from a shortest basis for the orthogonal system C^\perp. This approach seems conceptually simpler than that of classical minimal realization theory.Comment: 20 pages. Final version, to appear in special issue of IEEE Transactions on Information Theory on "Facets of coding theory: From algorithms to networks," dedicated to Ralf Koette

    A general realization theorem for matrix-valued Herglotz-Nevanlinna functions

    Get PDF
    New special types of stationary conservative impedance and scattering systems, the so-called non-canonical systems, involving triplets of Hilbert spaces and projection operators, are considered. It is established that every matrix-valued Herglotz-Nevanlinna function of the form V(z)=Q+Lz+\int_{\dR}(\frac{1}{t-z}-\frac{t}{1+t^2})d\Sigma(t) can be realized as a transfer function of such a new type of conservative impedance system. In this case it is shown that the realization can be chosen such that the main and the projection operators of the realizing system satisfy a certain commutativity condition if and only if L=0. It is also shown that V(z)V(z) with an additional condition (namely, LL is invertible or L=0), can be realized as a linear fractional transformation of the transfer function of a non-canonical scattering F+F_+-system. In particular, this means that every scalar Herglotz-Nevanlinna function can be realized in the above sense. Moreover, the classical Livsic systems (Brodskii-Livsic operator colligations) can be derived from F+F_+-systems as a special case when F+=IF_+=I and the spectral measure dΣ(t)d\Sigma(t) is compactly supported. The realization theorems proved in this paper are strongly connected with, and complement the recent results by Ball and Staffans.Comment: 28 page

    Differential Geometry of Quantum States, Observables and Evolution

    Full text link
    The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of systems are analised from this perspective, the relevant geometrical structures and their associated algebraic properties are highlighted, and the Qubit example is thoroughly discussed.Comment: 20 pages, comments are welcome

    Localization and Pattern Formation in Quantum Physics. I. Phenomena of Localization

    Full text link
    In these two related parts we present a set of methods, analytical and numerical, which can illuminate the behaviour of quantum system, especially in the complex systems. The key points demonstrating advantages of this approach are: (i) effects of localization of possible quantum states, more proper than "gaussian-like states"; (ii) effects of non-perturbative multiscales which cannot be calculated by means of perturbation approaches; (iii) effects of formation of complex quantum patterns from localized modes or classification and possible control of the full zoo of quantum states, including (meta) stable localized patterns (waveletons). We'll consider calculations of Wigner functions as the solution of Wigner-Moyal-von Neumann equation(s) corresponding to polynomial Hamiltonians. Modeling demonstrates the appearance of (meta) stable patterns generated by high-localized (coherent) structures or entangled/chaotic behaviour. We can control the type of behaviour on the level of reduced algebraical variational system. At the end we presented the qualitative definition of the Quantum Objects in comparison with their Classical Counterparts, which natural domain of definition is the category of multiscale/multiresolution decompositions according to the action of internal/hidden symmetry of the proper realization of scales of functional spaces. It gives rational natural explanation of such pure quantum effects as ``self-interaction''(self-interference) and instantaneous quantum interaction.Comment: LaTeX2e, spie.cls, 13 pages, 15 figures, submitted to Proc. of SPIE Meeting, The Nature of Light: What is a Photon? Optics & Photonics, SP200, San Diego, CA, July-August, 200
    • …
    corecore