48 research outputs found

    More on Geometric Morphisms between Realizability Toposes

    Full text link
    Geometric morphisms between realizability toposes are studied in terms of morphisms between partial combinatory algebras (pcas). The morphisms inducing geometric morphisms (the {\em computationally dense\/} ones) are seen to be the ones whose `lifts' to a kind of completion have right adjoints. We characterize topos inclusions corresponding to a general form of relative computability. We characterize pcas whose realizability topos admits a geometric morphism to the effective topos.Comment: 20 page

    Regular Functors and Relative Realizability Categories

    Full text link
    Relative realizability toposes satisfy a universal property that involves regular functors to other categories. We use this universal property to define what relative realizability categories are, when based on other categories than of the topos of sets. This paper explains the property and gives a construction for relative realizability categories that works for arbitrary base Heyting categories. The universal property shows us some new geometric morphisms to relative realizability toposes too

    Categorical Realizability for Non-symmetric Closed Structures

    Full text link
    In categorical realizability, it is common to construct categories of assemblies and categories of modest sets from applicative structures. These categories have structures corresponding to the structures of applicative structures. In the literature, classes of applicative structures inducing categorical structures such as Cartesian closed categories and symmetric monoidal closed categories have been widely studied. In this paper, we expand these correspondences between categories with structure and applicative structures by identifying the classes of applicative structures giving rise to closed multicategories, closed categories, monoidal bi-closed categories as well as (non-symmetric) monoidal closed categories. These applicative structures are planar in that they correspond to appropriate planar lambda calculi by combinatory completeness. These new correspondences are tight: we show that, when a category of assemblies has one of the structures listed above, the based applicative structure is in the corresponding class. In addition, we introduce planar linear combinatory algebras by adopting linear combinatory algebras of Abramsky, Hagjverdi and Scott to our planar setting, that give rise to categorical models of the linear exponential modality and the exchange modality on the non-symmetric multiplicative intuitionistic linear logic

    Planar Realizability via Left and Right Applications

    Get PDF
    We introduce a class of applicative structures called bi-BDI-algebras. Bi-BDI-algebras are generalizations of partial combinatory algebras and BCI-algebras, and feature two sorts of applications (left and right applications). Applying the categorical realizability construction to bi-BDI-algebras, we obtain monoidal bi-closed categories of assemblies (as well as of modest sets). We further investigate two kinds of comonadic applicative morphisms on bi-BDI-algebras as non-symmetric analogues of linear combinatory algebras, which induce models of exponential and exchange modalities on non-symmetric linear logics
    corecore