581 research outputs found

    A prototype telerobotic platform for live transmission line maintenance: review of design and development.

    Get PDF
    This paper reports technical design of a novel experimental test facility, using haptic-enabled teleoperation of robotic manipulators, for live transmission line maintenance. The goal is to study and develop appropriate techniques in repair overhead power transmission lines by allowing linemen to wirelessly guide a remote manipulator, installed on a crane bucket, to execute dexterous maintenance tasks, such as twisting a tie wire around a cable. Challenges and solutions for developing such a system are outlined. The test facility consists of a PHANToM Desktop haptic device (master site), an industrial hydraulic manipulator (slave site) mounted atop a Stewart platform, and a wireless communication channel connecting the master and slave sites. The teleoperated system is tested under different force feedback schemes, while the base is excited and the communication channel is delayed and/or lossy to emulate realistic network behaviors. The force feedback schemes are: virtual fixture, augmentation force and augmented virtual fixture. Performance of each scheme is evaluated under three measures: task completion time, number of failed trials and displacement of the slave manipulator end-effector. The developed test rig has been shown to be successful in performing haptic-enabled teleoperation for live-line maintenance in a laboratory setting. The authors aim at establishing a benchmark test facility for objective evaluation of ideas and concepts in the teleoperation of live-line maintenance tasks

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa

    Scour development around Mono Bucket Foundations

    Get PDF

    Sub-lunar Tap Yielding eXplorer (STYX) & Surface Telemetry Operations and Next-generation Excavation System (STONES)

    Get PDF
    The NASA RASC-AL Moon to Mars competition challenges student teams to develop a lightweight, durable, and hands-off method for extracting water from Martian/lunar subsurface ice layers while mapping soil density profiles. Future interplanetary expeditions are dependent on the availability of clean water and this project aims to accomplish this task. The challenge description enumerates several criteria to be met for successful designs. For further information, the STYX & STONES team conducted research on Cal Poly’s competition project from last year to consider the areas for redesign. As such, the team has utilized the background research from relevant patents and journal articles to consider brainstorming potentially viable solutions. Based on these solutions for each subsystem, the team converged the ideas using a series of decision matrices into a final design direction. In addition to reviewing the STYX design, several new considerations were made for the scope of this project. Primarily, this year’s team focused on developing a prototype that has the capability of operating in an extraterrestrial environment and thoroughly fulfilling the requirements posed by NASA. To visualize the requirements, the team created a list of customer needs, a House of Quality diagram, and an engineering specifications table. Additionally, the STYX & STONES team discussed the design process it plans to follow including major project milestones. Specifically, the team plans to excel in collecting more than five quarts of water autonomously while successfully identifying the overburden layers – tasks that previous teams have struggled with. The team’s design direction includes two main components: a masonry drill bit and an auger- heater probe hybrid tool. The masonry drill bit will create a hole in the overburden using the force from a rotary hammer. The heater probe tool will then be moved to align with the hole and be driven into the loosened overburden using the force of a small gear motor. The heater probe will then melt ice using a hot waterjet and deliver water via a peristaltic pump and a two-stage filtration system. To verify the design, the team completed a multitude of analyses and tests for each subsystem and the prototype as a whole. Through drilling tests, the team found that the rotary hammer and masonry bit can easily cut through all overburden layers while keeping weight on bit (WOB) below 150N. Similarly, the load cells attached to the drill carriage were tested and proven to be accurate at recording WOB data and providing feedback to the controller to monitor WOB. Furthermore, the load cells proved successful at recording accurate WOB data that can be analyzed to determine overburden composition. The pumping system was also tested and was capable of effectively moving water through all filters and delivering fluid to the waterjet. More tests were completed to verify the heater probe tool; these tests included controlling heater temperature, melting ice, expelling water through the waterjet, and removing loose material from the hole. To verify the design requirements, the team has completed analysis pertaining to each subsystem including the drill, heater probe, frame, and control systems. The team is confident in the drilling design based on testing and vibrations analysis. In the same manner, the team verified that the 12V peristaltic pump will have enough pressure head rise based on analysis and prototype testing. Using the prototype heater probe as a reference, the team fully characterized the heat transfer parameters of the final design and is confident the auger will be effective considering surrounding debris. Finally, the team tested the water jet design using 120oF water which provided optimistic results that the water jet will significantly expand the melt radius per hole. As a next step, the team will be testing the mechanical and controls systems simultaneously using manufactured parts. The following report details the subsystems and relevant information

    Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    Get PDF
    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft
    • …
    corecore