386 research outputs found

    Evaluation of Eigenvalue and Block Diagonalization Beamforming Precoding Performance for 5G Technology over Rician Channel

    Get PDF
    In traditional wireless cellular, at the same cell, users can cause co-channel interference (CCI) between each other; CCI can deteriorate the channel’s capacity. A multiple-input multiple-output (MIMO) system with beamforming technology solves this CCI problem. Exploiting the channel state information (CSI) in a multi-user MIMO (MU-MIMO) system can improve the performance of the channel link by designing the precoding vectors for every user. A linear precoder has multiple methods, like Block diagonalization precoding (BDP) and Eigenvalue precoding (EP) that facilitate its use. This paper evaluates the symbol-detection performance for BDP and EP in MU-MIMO beamforming over a Rayleigh fading channel. Then, the channel matrix replaces the typical channel assumption with its correlated realistic Rician fading channel. Simulation results show that the Rician fading channel has performance improvement until with low Rician factor value, compared to a conventional channel. The high value of the Rician factor can reduce the error rate

    On the precoder design of flat fading MIMO systems equipped with MMSE receivers: a large system approach

    Full text link
    This paper is devoted to the design of precoders maximizing the ergodic mutual information (EMI) of bi-correlated flat fading MIMO systems equiped with MMSE receivers. The channel state information and the second order statistics of the channel are assumed available at the receiver side and at the transmitter side respectively. As the direct maximization of the EMI needs the use of non attractive algorithms, it is proposed to optimize an approximation of the EMI, introduced recently, obtained when the number of transmit and receive antennas tt and rr converge to ∞\infty at the same rate. It is established that the relative error between the actual EMI and its approximation is a O(1t2)O(\frac{1}{t^{2}}) term. It is shown that the left singular eigenvectors of the optimum precoder coincide with the eigenvectors of the transmit covariance matrix, and its singular values are solution of a certain maximization problem. Numerical experiments show that the mutual information provided by this precoder is close from what is obtained by maximizing the true EMI, but that the algorithm maximizing the approximation is much less computationally intensive.Comment: Submitted to IEEE Transactions on Information Theor

    Location-Based Beamforming for Rician Wiretap Channels

    Full text link
    We propose a location-based beamforming scheme for wiretap channels, where a source communicates with a legitimate receiver in the presence of an eavesdropper. We assume that the source and the eavesdropper are equipped with multiple antennas, while the legitimate receiver is equipped with a single antenna. We also assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper's location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed location-based beamforming is adopted. Finally, we investigate the impact location uncertainty has on the secrecy outage probability, showing how our proposed solution can still allow for secrecy even when the source has limited information on the eavesdropper's location.Comment: 6 pages, 4 figure

    Combining Alamouti STBC with Block Diagonalization for Downlink MU-MIMO System over Rician Channel for 5G

    Get PDF
    Wireless communication faces a number of adversities and obstacles as a result of fading and co-channel interference (CCI). Diversity with beamformer techniques may be used to mitigate degradation in the system performance. Alamouti space-time-block-code (STBC) is a strong scheme focused on accomplishing spatial diversity at the transmitter, which needs a straightforward linear processing in the receiver. Also, high bit-error-rate (BER) performance can be achieved by using the multiple-input multiple-output (MIMO) system with beamforming technology. This approach is particularly useful for CCI suppression. Exploiting the channel state information (CSI) at the transmitter can improve the STBC through the use of a beamforming precoding. In this paper, we propose the combination between Alamouti STBC and block diagonalization (BD) for downlink multi-user MIMO system. Also, this paper evaluates the system performance improvement of the extended Alamouti scheme, with the implementation of BD precoding over a Rayleigh and Rician channel. Simulation results show that the combined system has performance better than the performance of beamforming system. Also, it shows that the combined system performance of extended Alamouti outperforms the combined system performance without extended Alamouti. Furthermore, numerical results confirm that the Rician channel can significantly improve the combined system performance
    • 

    corecore