2 research outputs found

    Adaptive Server and Path Switching for Content Delivery Networks

    Get PDF
    The communications quality of content delivery networks (CDNs), which are geographically distributed networks that have been optimized for content delivery, deteriorates when interflow congestion conditions are severe. Herein, we propose an adaptive server and path switching scheme that is based on the estimated acquisition throughput of each path. We also provide simulation results that show our proposed method can provide higher throughput performance levels than existing methods

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%
    corecore