1,057 research outputs found

    Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links

    No full text
    International audienceVirtual surgery simulators show a lot of advantages in the world of surgery training, where they allow to improve the quality of surgeons' gesture. One of the current major technical difficulties for the development of surgery simulation is the possibility to perform a real-time computation of soft tissue deformation by considering the accurate modeling of their mechanical properties. However today, few models are available, they are still time consuming and limited in number of elements by algorithm complexity. We present in this paper a new method and framework that we call 'HEML' (Hyper-Elastic Mass Links), which is particularly fast. It is derived from the finite element method, can handle visco-hyperelastic and large deformation modeling. Although developed initially for medical applications, the HEML method can be used for any numerical computation of hyperelastic material deformations based on a tetrahedral mesh. A comparison with existing methods shows a much faster speed. A comparison with Mass-Spring methods, that are particularly fast but not realistic, shows that they can be considered as a degenerate case of the HEML framework

    Nonlinear effects in finite elements analysis of colorectal surgical clamping

    Get PDF
    Minimal Invasive Surgery (MIS) is a procedure that has increased its applications in past few years in different types of surgeries. As number of application fields are increasing day by day, new issues have been arising. In particular, instruments must be inserted through a trocar to access the abdominal cavity without capability of direct manipulation of tissues, so a loss of sensitivity occurs. Generally speaking, the student of medicine or junior surgeons need a lot of practice hours before starting any surgical procedure, since they have to difficulty in acquiring specific skills (hand–eye coordination among others) for this type of surgery. Here is what the surgical simulator present a promising training method using an approach based on Finite Element Method (FEM). The use of continuum mechanics, especially Finite Element Analysis (FEA) has gained an extensive application in medical field in order to simulate soft tissues. In particular, colorectal simulations can be used to understand the interaction between colon and the surrounding tissues and also between colon and instruments. Although several works have been introduced considering small displacements, FEA applied to colorectal surgical procedures with large displacements is a topic that asks for more investigations. This work aims to investigate how FEA can describe non-linear effects induced by material properties and different approximating geometries, focusing as test-case application colorectal surgery. More in detail, it shows a comparison between simulations that are performed using both linear and hyperelastic models. These different mechanical behaviours are applied on different geometrical models (planar, cylindrical, 3D-SS and a real model from digital acquisitions 3D-S) with the aim of evaluating the effects of geometric non-linearity. Final aim of the research is to provide a preliminary contribution to the simulation of the interaction between surgical instrument and colon tissues with multi-purpose FEA in order to help the preliminary set-up of different bioengineering tasks like force-contact evaluation or approximated modelling for virtual reality (surgical simulations). In particular, the contribution of this work is focused on the sensitivity analysis of the nonlinearities by FEA in the tissue-tool interaction through an explicit FEA solver. By doing in this way, we aim to demonstrate that the set-up of FEA computational surgical tools may be simplified in order to provide assistance to non-expert FEA engineers or medicians in more precise way of using FEA tools

    Finite element modelling of the foot for clinical application: A systematic review

    Get PDF
    Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling is only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system

    Finite element simulation for the effect of loading rate on visco-hyperelastic characterisation of soft materials by spherical nanoindentation

    Get PDF
    Nanoindentation test performed by atomic force microscopy is highly recommended for the characterisation of soft materials at nanoscale. The assumption proposed in the characterisation is that the material is pure elastic with no viscosity. However, this assumption does not represent the real characteristics of soft materials such as bio tissues or cells. Therefore, a parametric finite element simulation of nanoindentation by spherical tip was carried out to investigate the response of cells with different constitutive laws (elastic, hyperelastic and visco-hyperelastic). The investigation of the loading rate effect on the characterisation of cell mechanical properties was performed for different size of spherical tips. The selected dimensions of spherical tips cover commercially available products. The viscosity effects are insensitive to the varied dimensions of spherical tip in this study. A limit loading rate was found above which viscous effect has to be considered to correctly determine the mechanical properties. The method in this work can be implemented to propose a criterion for the threshold of loading rate when viscosity effect can be neglected for soft material characterisation

    In vivo measurement of human brain elasticity using a light aspiration device

    Full text link
    The brain deformation that occurs during neurosurgery is a serious issue impacting the patient "safety" as well as the invasiveness of the brain surgery. Model-driven compensation is a realistic and efficient solution to solve this problem. However, a vital issue is the lack of reliable and easily obtainable patient-specific mechanical characteristics of the brain which, according to clinicians' experience, can vary considerably. We designed an aspiration device that is able to meet the very rigorous sterilization and handling process imposed during surgery, and especially neurosurgery. The device, which has no electronic component, is simple, light and can be considered as an ancillary instrument. The deformation of the aspirated tissue is imaged via a mirror using an external camera. This paper describes the experimental setup as well as its use during a specific neurosurgery. The experimental data was used to calibrate a continuous model. We show that we were able to extract an in vivo constitutive law of the brain elasticity: thus for the first time, measurements are carried out per-operatively on the patient, just before the resection of the brain parenchyma. This paper discloses the results of a difficult experiment and provide for the first time in-vivo data on human brain elasticity. The results point out the softness as well as the highly non-linear behavior of the brain tissue.Comment: Medical Image Analysis (2009) accept\'

    Realistic tool-tissue interaction models for surgical simulation and planning

    Get PDF
    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in pre- and intra-operative surgical planning. Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. The soft-tissue constitutive laws, organ geometry and boundary conditions imposed by the connective tissues surrounding the organ, and the shape of the surgical tool interacting with the organ are some of the factors that govern the accuracy of medical intervention planning.\ud \ud This thesis is divided into three parts. First, we compare the accuracy of linear and nonlinear constitutive laws for tissue. An important consequence of nonlinear models is the Poynting effect, in which shearing of tissue results in normal force; this effect is not seen in a linear elastic model. The magnitude of the normal force for myocardial tissue is shown to be larger than the human contact force discrimination threshold. Further, in order to investigate and quantify the role of the Poynting effect on material discrimination, we perform a multidimensional scaling study. Second, we consider the effects of organ geometry and boundary constraints in needle path planning. Using medical images and tissue mechanical properties, we develop a model of the prostate and surrounding organs. We show that, for needle procedures such as biopsy or brachytherapy, organ geometry and boundary constraints have more impact on target motion than tissue material parameters. Finally, we investigate the effects surgical tool shape on the accuracy of medical intervention planning. We consider the specific case of robotic needle steering, in which asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. We present an analytical and finite element (FE) model for the loads developed at the bevel tip during needle-tissue interaction. The analytical model explains trends observed in the experiments. We incorporated physical parameters (rupture toughness and nonlinear material elasticity) into the FE model that included both contact and cohesive zone models to simulate tissue cleavage. The model shows that the tip forces are sensitive to the rupture toughness. In order to model the mechanics of deflection of the needle, we use an energy-based formulation that incorporates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot-driven needle interacting with gels

    A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma

    Get PDF
    Pathological conditions such as diabetic foot and plantar heel pain are associated with changes in the mechanical properties of plantar soft tissue. However, the causes and implications of these changes are not yet fully understood. This is mainly because accurate assessment of the mechanical properties of plantar soft tissue in the clinic remains extremely challenging.To develop a clinically viable non-invasive method of assessing the mechanical properties of the heel pad. Furthermore the effect of non-linear mechanical behaviour of the heel pad on its ability to uniformly distribute foot-ground contact loads in light of the effect of overloading is also investigated.An automated custom device for ultrasound indentation was developed along with custom algorithms for the automated subject-specific modeling of heel pad. Non-time-dependent and time-dependent material properties were inverse engineered from results from quasi-static indentation and stress relaxation test respectively. The validity of the calculated coefficients was assessed for five healthy participants. The implications of altered mechanical properties on the heel pad's ability to uniformly distribute plantar loading were also investigated in a parametric analysis.The subject-specific heel pad models with coefficients calculated based on quasi-static indentation and stress relaxation were able to accurately simulate dynamic indentation. Average error in the predicted forces for maximum deformation was only 6.6±4.0%. When the inverse engineered coefficients were used to simulate the first instance of heel strike the error in terms of peak plantar pressure was 27%. The parametric analysis indicated that the heel pad's ability to uniformly distribute plantar loads is influenced both by its overall deformability and by its stress-strain behaviour. When overall deformability stays constant, changes in stress/strain behaviour leading to a more "linear" mechanical behaviour appear to improve the heel pad's ability to uniformly distribute plantar loading.The developed technique can accurately assess the visco-hyperelastic behaviour of heel pad. It was observed that specific change in stress-strain behaviour can enhance/weaken the heel pad's ability to uniformly distribute plantar loading that will increase/decrease the risk for overloading and trauma

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection
    • …
    corecore