186 research outputs found

    Scalable wireless sensor networks for dynamic communication environments: simulation and modelling

    No full text
    This thesis explores the deployment of Wireless Sensor Networks (WSNs) on localised maritime events. In particular, it will focus on the deployment of a WSN at sea and estimating what challenges derive from the environment and how they affect communication. This research addresses these challenges through simulation and modelling of communication and environment, evaluating the implications of hardware selection and custom algorithm development. The first part of this thesis consists of the analysis of aspects related to the Medium Access Control layer of the network stack in large-scale networks. These details are commonly hidden from upper layers, thus resulting in misconceptions of real deployment characteristics. Results show that simple solutions have greater advantages when the number of nodes within a cluster increases. The second part considers routing techniques, with focus on energy management and packet delivery. It is shown that, under certain conditions, relaying data can increase energy savings, while at the same time allows a more even distribution of its usage between nodes. The third part describes the development of a custom-made network simulator. It starts by considering realistic radio, channel and interference models to allow a trustworthy simulation of the deployment environment. The MAC and Routing techniques developed thus far are adapted to the simulator in a cross-layer manner. The fourth part consists of adapting the WSN behaviour to the variable weather and topology found in the chosen application scenario. By analysing the algorithms presented in this work, it is possible to find and use the best alternative under any set of environmental conditions. This mechanism, the environment-aware engine, uses both network and sensing data to optimise performance through a set of rules that involve message delivery and distance between origin and cluster hea

    Simulation of the RPL Routing Protocol for IPv6 Sensor Networks: two cases studies

    Get PDF
    International audienceThe routing protocol for low power and lossy networks (RPL) was recently designed in the ROLL working group at IETF. Few simulation tools exist that enable its evaluation in order to prepare for its real deployment. In this paper, we provide a new evaluation of this protocol with two approaches using two different simulators adapted to our needs. We first evaluated the value of mobile sinks in wireless sensor networks to extend the network lifetime using a sensor network simulator, WSNet, augmented by our own RPL module. We then focus on the performance comparison of simulated sensor networks and real powerline communication networks (PLC) using the RPL capable COOJA simulator augmented by our own PLC module. In each case, we justify the simulator choice, describe the tools implemented and present the obtained results. Our studies give two new RPL evaluations and show the interest of choosing a simulation tool adapted to the targeted study with the associated software developments. As a conclusion, we demonstrated how these two case studies can be combined in a heterogeneous network architecture to extend its global lifetime

    Delay-Tolerant ICN and Its Application to LoRa

    Full text link
    Connecting long-range wireless networks to the Internet imposes challenges due to vastly longer round-trip-times (RTTs). In this paper, we present an ICN protocol framework that enables robust and efficient delay-tolerant communication to edge networks. Our approach provides ICN-idiomatic communication between networks with vastly different RTTs. We applied this framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-Internet and asynchronous data production in the LoRa edge. Instead of using LoRaWAN, we implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY and ICN protocol mechanisms in RIOT OS. Executed on off-the-shelf IoT hardware, we provide a comparative evaluation for basic NDN-style ICN [60], RICE [31]-like pulling, and reflexive forwarding [46]. This is the first practical evaluation of ICN over LoRa using a reliable MAC. Our results show that periodic polling in NDN works inefficiently when facing long and differing RTTs. RICE reduces polling overhead and exploits gateway knowledge, without violating ICN principles. Reflexive forwarding reflects sporadic data generation naturally. Combined with a local data push, it operates efficiently and enables lifetimes of >1 year for battery powered LoRa-ICN nodes.Comment: 12 pages, 7 figures, 2 table

    Efficient Control Message Dissemination in Dense Wireless Lighting Networks

    Get PDF
    Modern lighting systems using LED light sources lead to dense lighting installations. The control of such systems using wireless Machine-to-Machine (M2M) where standard LED light sources are replaced by wirelessly controllable LED light sources create new problems which are investigated in this thesis. Current approaches for control message transmission is such networks are based on broadcasting messages among luminaires. However, adequate communication performance - in particular, sufficiently low latency and synchronicity - is difficult to ensure in such networks, in particular, if the network is part of a wireless building management system and carries not only low-latency broadcast messages but also collects data from sensors. In this thesis, the problem of simultaneously controlling dense wireless lighting control networks with a higher number of luminaires is addressed. Extensive computer simulation shows that current state-of-the-art protocols are not suitable for lighting control applications, especially if complex applications are required such as dimming or colour tuning. The novel DÂłLC-Suite is proposed, which is specially designed for dense wireless lighting control networks. This suite includes three sub-protocols. First, a protocol to organize a network in form of a cluster tree named CIDER. To ensure that intra-cluster messages can be exchanged simultaneously, a weighted colouring algorithm is applied to reduce the inter cluster interference. To disseminate efficiently control messages a protocol is proposed named RLL. The DÂłLC-Suite is evaluated and validated using different methods. A convergence analysis show that CIDER is able to form a network in a matter of minutes. Simulation results of RLL indicate that this protocol is well suited for dense wireless applications. In extensive experiments, it is shown that the DÂłLC-Suite advances the current state-of-the-art in several aspects. The suite is able to deliver control messages across multiple hops meeting the requirements of lighting applications. Especially, it provides a deterministic latency, very promising packet loss ratios in low interference environments, and mechanisms for simultaneous message delivery which is important in terms of Quality of Experience (QoE

    Long-Term Stable Communication in Centrally Scheduled Low-Power Wireless Networks

    Get PDF
    With the emergence of the Internet of Things (IoT), more devices are connected than ever before. Most of these communicate wirelessly, forming Wireless Sensor Networks. In recent years, there has been a shift from personal networks, like Smart Home, to industrial networks. Industrial networks monitor pipelines or handle the communication between robots in factories. These new applications form the Industrial Internet of Things (IIoT). Many industrial applications have high requirements for communication, higher than the requirements of common IoT networks. Communications must stick to hard deadlines to avoid harm, and they must be highly reliable as skipping information is not a viable option when communicating critical information. Moreover, communication has to remain reliable over longer periods of time. As many sensor locations do not offer a power source, the devices have to run on battery and thus have to be power efficient. Current systems offer solutions for some of these requirements. However, they especially lack long-term stable communication that can dynamically adapt to changes in the wireless medium.In this thesis, we study the problem of stable and reliable communication in centrally scheduled low-power wireless networks. This communication ought to be stable when it can dynamically adapt to changes in the wireless medium while keeping latency at a minimum. We design and investigate approaches to solve the problem of low to high degrees of interference in the wireless medium. We propose three solutions to overcome interference: MASTER with Sliding Windows brings dynamic numbers of retransmissions to centrally scheduled low-power wireless networks, OVERTAKE allows to skip nodes affected by interference along the path, and AUTOBAHN combines opportunistic routing and synchronous transmissions with the Time-Slotted Channel Hopping (TSCH) MAC protocol to overcome local wide-band interference with the lowest possible latency. We evaluate our approaches in detail on testbed deployments and provide open-source implementations of the protocols to enable others to build their work upon them

    Latency Minimization in Wireless IoT Using Prioritized Channel Access and Data Aggregation

    Get PDF
    Future Internet of Things (IoT) networks are expected to support a massive number of heterogeneous devices/sensors in diverse applications ranging from eHealthcare to industrial control systems. In highly-dense deployment scenarios such as industrial IoT systems, providing reliable communication links with low-latency becomes challenging due to the involved system delay including data acquisition and processing latencies at the edge-side of IoT networks. In this regard, this paper proposes a priority-based channel access and data aggregation scheme at the Cluster Head (CH) to reduce channel access and queuing delays in a clustered industrial IoT network. First, a prioritized channel access mechanism is developed by assigning different Medium Access Control (MAC) layer attributes to the packets coming from two types of IoT nodes, namely, high-priority and low-priority nodes, based on the application-specific information provided from the cloud-center. Subsequently, a preemptive M/G/1 queuing model is employed by using separate low-priority and high- priority queues before sending aggregated data to the Cloud. Our results show that the proposed priority-based method significantly improves the system latency and reliability as compared to the non-prioritized scheme

    Dynamic cluster scheduling for cluster-tree WSNs

    Get PDF
    While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario

    Flexible HW-SW design and analysis of an MMT-based MANET system on FPGA

    Get PDF
    Recently there has been a rapid growth of research interests in Mobile Ad-hoc Networks (MANETs). Their infrastructureless and dynamic nature demands that new strategies be implemented on a robust wireless communication platform in order to provide efficient end-to-end communication. Many routing algorithms have been developed to serve this purpose. This thesis investigated Multi-Meshed Tree (MMT) algorithm, an integrated solution that combines routing, clustering and medium access control operations based on a common multi-meshed tree concept. It provides the robustness and redundancy inherent in mesh topologies and uses the tree branches to deliver packets. MMT is the first of its kind that enables a single algorithm to form multiple proactive routes within a cluster while supporting reactive routes between different clusters. Recent published research and simulations have shown its favorable features and results. To explore the MMT algorithm\u27s novel feature in real systems against simulation work, this work adopts Field Programmable Gate Arrays (FPGA) as the platform for wireless system implementations. Full hardware and various System-on-Chip Hardware-Software designs are developed and studied, providing a design practice that contributes to low-cost system development in the field of MANET by utilizing the evolving FPGA technology. The results show that the MMT-based systems functioned accurately and effectively; in all proposed test scenarios they demonstrated many of the features that a desired MANET routing algorithm should have: high transmission success rate, low latency, scalability, few queued packets and low overhead. The results give valuable insights into the MMT algorithm\u27s performance and facilitate its future improvements
    • …
    corecore