2,613 research outputs found

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    Path tracing multivue adaptatif

    Get PDF
    International audienceRendering photo-realistic image sequences using path tracing and Monte Carlo integration often requires sampling a large number of paths to get converged results. In the context of rendering multiple views or animated sequences, such sampling can be highly redundant. Several methods have been developed to share sampled paths between spatially or temporarily similar views. However, such sharing is challenging since it can lead to bias in the final images. Our contribution is a Monte Carlo sampling technique which generates paths, taking into account several cameras. First, we sample the scene from all the cameras to generate hit points. Then, an importance sampling technique generates bouncing directions which are shared by a subset of cameras. This set of hit points and bouncing directions is then used within a regular path tracing solution. For animated scenes, paths remain valid for a fixed time only, but sharing can still occur between cameras as long as their exposure time intervals overlap. We show that our technique generates less noise than regular path tracing and does not introduce noticeable bias.Le rendu de séquences d'images photoréalistes en lancer de rayons nécessite souvent l'échantillonnage d'un grand nombre de chemins pour obtenir des résultats convergés. Dans le contexte du rendu multi-vue ou de séquences animées, cet échantillonnage peut être redondant. Plusieurs méthodes ont été développées pour réutiliser des chemins échantillonnés entre des vues proches spatialement ou temporellement. Cependant, un telle réutilisation est complexe car elle peut mener à du biais dans les images. Notre contribution est une technique d'échantillonnage qui génère des chemins en prenant en compte plusieurs caméras. Tout d'abord, nous échantillonnons la scène depuis toutes les caméras pour générer des points visibles. Ensuite, nous générons des directions par importance qui sont partagées par un sous-ensemble de caméras. Cet ensemble de points et de directions est ensuite utilisé dans une solution de lancer de rayons classique. Pour les scènes animées, les chemins ne sont réutilisables qu'à temps fixe, mais un partage peut toujours avoir lieu entre les caméras si leurs intervalles d'exposition se recouvrent. Notre technique génère moins de bruit que le path tracing classique à temps de calcul équivalent et n’introduit pas de biais perceptible

    Master of Science

    Get PDF
    thesisVirtual point lights (VPLs) provide an effective solution to global illumination computation by converting the indirect illumination into direct illumination from many virtual light sources. This approach results in a less noisy image compare to Monte Carlo methods. In addition, the number of VPLs to generate can be specified in advance; therefore, it can be adjusted depending on the scene, desired quality, time budget, and the available computational power. In this thesis, we investigate a new technique that carefully places VPLs for providing improved rendering quality for computing global illumination using VPLs. Our method consists of three different passes. In the first pass, we randomly generate a large number of VPLs in the scene starting from the camera to place them in positions that can contribute to the final rendered image. Then, we remove a considerable number of these VPLs using a Poisson disk sample elimination method to get a subset of VPLs that are uniformly distributed over the part of the scene that is indirectly visible to the camera. The second pass is to estimate the radiant intensity of these VPLs by performing light tracing starting from the original light sources in the scene and scatter the radiance of light rays at a hit-point to the VPLs close to that point. The final pass is rendering the scene, which consists of shading all points in the scene visible to the camera using the original light sources and VPLs

    Automated three-axis gonioreflectometer for computer graphics applications

    Get PDF
    We describe an automated three-axis BRDF measurement instrument that can help increase the physical realism of computer graphics images by providing light scattering data for the surfaces within a synthetic scene that is to be rendered. To our knowledge, the instrument is unique in combining wide angular coverage (beyond 85 ° from the surface normal), dense sampling of the visible wavelength spectrum (1024 samples), and rapid operation (less than ten hours for complete measurement of an isotropic sample). The gonioreflectometer employs a broadband light source and a detector with a diffraction grating and linear diode array. Validation was achieved by comparisons against reference surfaces and other instruments. The accuracy and spectral and angular ranges of the BRDFs are appropriate for computer graphics imagery, while reciprocity and energy conservation are preserved. Measured BRDFs on rough aluminum, metallic silver automotive paint, and a glossy yellow paint are reported, and an example rendered automotive image is included
    • …
    corecore