6 research outputs found

    Real-time pursuit-evasion with humanoid robots

    Get PDF
    We consider a pursuit-evasion problem between humanoids. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line-of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control scheme is a maneuver planning module which makes use of closed- form expressions exclusively. This allows its use in a replanning framework, where each robot updates its motion plan upon completion of a step to account for the perceived motion of the other. Simulation and experimental results on NAO humanoids reveal an interesting asymptotic behavior which was predicted using unicycle as template models for trajectory generation

    Real-time pursuit-evasion with humanoid robots

    Get PDF
    We consider a pursuit-evasion problem between humanoids. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line-of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control scheme is a maneuver planning module which makes use of closed-form expressions exclusively. This allows its use in a replanning framework, where each robot updates its motion plan upon completion of a step to account for the perceived motion of the other. Simulation and experimental results on NAO humanoids reveal an interesting asymptotic behavior which was predicted using unicycle as template models for trajectory generation

    MPC-based humanoid pursuit-evasion in the presence of obstacles

    Get PDF
    We consider a pursuit-evasion problem between humanoids in the presence of obstacles. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line- of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control architecture is a Model Predictive Control scheme for generating a stable gait. This allows for the inclusion of workspace obstacles, which we take into account at two levels: during the determination of the footsteps orientation and as an explicit MPC constraint. We illustrate the results with simulations on NAO humanoids

    Humanoid gait generation for walk-to locomotion using single-stage MPC

    Get PDF
    We consider the problem of gait generation for a humanoid robot that must walk to an assigned Cartesian goal. As a first solution, we consider a rather straightforward adaptation of our previous work: An external block produces high-level velocities, which are then tracked by a double-stage intrinsically stable MPC scheme where the orientation of the footsteps is chosen before determining their location and the CoM trajectory. The second solution, which represents the main contribution of the paper, is conceptually different: no high-level velocity is generated, and footstep orientations are chosen at the same time of the other decision variables in a singlestage MPC. This is made possible by carefully redesigning the motion constraints so as to preserve linearity. Preliminary results on a simulated NAO confirm that the single-stage method outperforms the conventional double-stage scheme

    A framework for safe human-humanoid coexistence

    Get PDF
    This work is focused on the development of a safety framework for Human-Humanoid coexistence, with emphasis on humanoid locomotion. After a brief introduction to the fundamental concepts of humanoid locomotion, the two most common approaches for gait generation are presented, and are extended with the inclusion of a stability condition to guarantee the boundedness of the generated trajectories. Then the safety framework is presented, with the introduction of different safety behaviors. These behaviors are meant to enhance the overall level of safety during any robot operation. Proactive behaviors will enhance or adapt the current robot operations to reduce the risk of danger, while override behaviors will stop the current robot activity in order to take action against a particularly dangerous situation. A state machine is defined to control the transitions between the behaviors. The behaviors that are strictly related to locomotion are subsequently detailed, and an implementation is proposed and validated. A possible implementation of the remaining behaviors is proposed through the review of related works that can be found in literature

    Humanoid gait generation via MPC: stability, robustness and extensions

    Get PDF
    Research on humanoid robots has made significant progress in recent years, and Model Predictive Control (MPC) has seen great applicability as a technique for gait generation. The main advantages of MPC are the possibility of enforcing constraints on state and inputs, and the constant replanning which grants a degree of robustness. This thesis describes a framework based on MPC for humanoid gait generation, and analyzes some theoretical aspects which have often been neglected. In particular, the stability of the controller is proved. Due to the presence of constraints, this requires proving recursive feasibility, i.e., that the algorithm is able to recursively guarantee that a solution satisfying the constraints is found. The scheme is referred to as Intrinsically Stable MPC (IS-MPC). A basic scheme is presented, and its stability and feasibility guarantees are discussed. Then, several extensions are introduced. The guarantees of the basic scheme are carried over to a robust version of IS-MPC. Furthermore, extension to uneven ground and to a more accurate multi-mass model are discussed. Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO) are presented in the concluding section
    corecore