430 research outputs found

    Dynamic Assortment Optimization with Changing Contextual Information

    Full text link
    In this paper, we study the dynamic assortment optimization problem under a finite selling season of length TT. At each time period, the seller offers an arriving customer an assortment of substitutable products under a cardinality constraint, and the customer makes the purchase among offered products according to a discrete choice model. Most existing work associates each product with a real-valued fixed mean utility and assumes a multinomial logit choice (MNL) model. In many practical applications, feature/contexutal information of products is readily available. In this paper, we incorporate the feature information by assuming a linear relationship between the mean utility and the feature. In addition, we allow the feature information of products to change over time so that the underlying choice model can also be non-stationary. To solve the dynamic assortment optimization under this changing contextual MNL model, we need to simultaneously learn the underlying unknown coefficient and makes the decision on the assortment. To this end, we develop an upper confidence bound (UCB) based policy and establish the regret bound on the order of O~(dT)\widetilde O(d\sqrt{T}), where dd is the dimension of the feature and O~\widetilde O suppresses logarithmic dependence. We further established the lower bound Ω(dT/K)\Omega(d\sqrt{T}/K) where KK is the cardinality constraint of an offered assortment, which is usually small. When KK is a constant, our policy is optimal up to logarithmic factors. In the exploitation phase of the UCB algorithm, we need to solve a combinatorial optimization for assortment optimization based on the learned information. We further develop an approximation algorithm and an efficient greedy heuristic. The effectiveness of the proposed policy is further demonstrated by our numerical studies.Comment: 4 pages, 4 figures. Minor revision and polishing of presentatio

    Personalized Purchase Prediction of Market Baskets with Wasserstein-Based Sequence Matching

    Full text link
    Personalization in marketing aims at improving the shopping experience of customers by tailoring services to individuals. In order to achieve this, businesses must be able to make personalized predictions regarding the next purchase. That is, one must forecast the exact list of items that will comprise the next purchase, i.e., the so-called market basket. Despite its relevance to firm operations, this problem has received surprisingly little attention in prior research, largely due to its inherent complexity. In fact, state-of-the-art approaches are limited to intuitive decision rules for pattern extraction. However, the simplicity of the pre-coded rules impedes performance, since decision rules operate in an autoregressive fashion: the rules can only make inferences from past purchases of a single customer without taking into account the knowledge transfer that takes place between customers. In contrast, our research overcomes the limitations of pre-set rules by contributing a novel predictor of market baskets from sequential purchase histories: our predictions are based on similarity matching in order to identify similar purchase habits among the complete shopping histories of all customers. Our contributions are as follows: (1) We propose similarity matching based on subsequential dynamic time warping (SDTW) as a novel predictor of market baskets. Thereby, we can effectively identify cross-customer patterns. (2) We leverage the Wasserstein distance for measuring the similarity among embedded purchase histories. (3) We develop a fast approximation algorithm for computing a lower bound of the Wasserstein distance in our setting. An extensive series of computational experiments demonstrates the effectiveness of our approach. The accuracy of identifying the exact market baskets based on state-of-the-art decision rules from the literature is outperformed by a factor of 4.0.Comment: Accepted for oral presentation at 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019

    Decision Forest: A Nonparametric Approach to Modeling Irrational Choice

    Get PDF
    Customer behavior is often assumed to follow weak rationality, which implies that adding a product to an assortment will not increase the choice probability of another product in that assortment. However, an increasing amount of research has revealed that customers are not necessarily rational when making decisions. In this paper, we propose a new nonparametric choice model that relaxes this assumption and can model a wider range of customer behavior, such as decoy effects between products. In this model, each customer type is associated with a binary decision tree, which represents a decision process for making a purchase based on checking for the existence of specific products in the assortment. Together with a probability distribution over customer types, we show that the resulting model -- a decision forest -- is able to represent any customer choice model, including models that are inconsistent with weak rationality. We theoretically characterize the depth of the forest needed to fit a data set of historical assortments and prove that with high probability, a forest whose depth scales logarithmically in the number of assortments is sufficient to fit most data sets. We also propose two practical algorithms -- one based on column generation and one based on random sampling -- for estimating such models from data. Using synthetic data and real transaction data exhibiting non-rational behavior, we show that the model outperforms both rational and non-rational benchmark models in out-of-sample predictive ability.Comment: The paper is forthcoming in Management Science (accepted on July 25, 2021
    • …
    corecore