111 research outputs found

    Hardware Implementation of Filtering Based Sidelobe Suppression for Spectrally Agile Multicarrier based Cognitive Radio Systems

    Get PDF
    Due to the ever increasing dependency on existing wireless technologies and the growing usage of sophisticated wireless devices, the demand for bandwidth is rising exponentially. Also, the Federal Communications Commission (FCC) has reserved a considerable amount of spectrum for licensed users. As a result, the unlicensed spectrum usage is constrained to the overcrowded unlicensed spectrum. Various spectral management surveys have indicated inefficient spectrum utilization in the licensed spectral bands. The congested unlicensed spectrum and inefficiently used licensed frequency bands calls for an approach to use the available spectrum opportunistically. Therefore, the concept of Spectrum Pooling , which is based on Dynamic Spectrum Access (DSA), was proposed to make the unused sections of licensed spectrum available to the unlicensed users. In Spectrum Pooling, an empty section of licensed spectrum is borrowed by a secondary user for certain period of time without interfering with the licensed user. Orthogonal Frequency Division Multiplexing (OFDM) is a transmission scheme that is a candidate for Spectrum Pooling since it is capable of forming an adaptive spectral shape that allows coexistence of licensed and unlicensed users while attemting to minimize any interference. Subcarriers in the OFDM signal can be deactivated to generate Non-Contiguous OFDM (NC-OFDM). Even though NC-OFDM allows efficient use of available spectrum, it causes out of band (OOB) radiation, which adversely affects the performance of adjacent user. This thesis presents two novel techniques for combat the effects of OOB radiation generated by NC-OFDM. The proposed techniques employ a filtering-based approach combined with the technique of windowing in order to suppress the unwanted sidelobes by around 35dB-40dB. The attenuation is achieved without affecting other transmission parameters of the secondary user significantly

    Audio quality measurements for wireless microphones in spectrum pooling scenarios

    Get PDF
    In this contribution the influence of different broadband OFDM schemes on the perceptual audio quality of narrowband wireless microphone links is evaluated, since coexistence scenarios of wireless microphones and Orthogonal frequency-division multiplexing (OFDM) based services arise in the TV bands. Therefore, we present different non-contiguous cyclic-prefix (CP-)OFDM and offset quadrature amplitude modulation (OQAM-)OFDM system designs based on the spectrum pooling concept. We measure their power suppression in the subchannel allocated for the wireless microphone. As an indicator of the perceptual audio quality, we measure the objective difference grade of a colored noise audio signal emitted over a consumerlike hardware. The measurements show that the non-contiguous OQAM-OFDM scheme not only introduces lower interference to the FM link, but also has the advantage of requiring less number of notched carriers in comparison to CP-OFDM. By application of non-contiguous OQAM-OFDM with an appropriate number of notched carriers instead of the classical CP-OFDM scheme, wireless microphone systems can still sustain a significant low SIR when non-professional hardware is applied. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Sennheiser Electronic GmbH & Co. KGSennheiser electronic GmbH & Co. K

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI
    • …
    corecore