9,047 research outputs found

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018

    Screen Content Image Segmentation Using Sparse-Smooth Decomposition

    Full text link
    Sparse decomposition has been extensively used for different applications including signal compression and denoising and document analysis. In this paper, sparse decomposition is used for image segmentation. The proposed algorithm separates the background and foreground using a sparse-smooth decomposition technique such that the smooth and sparse components correspond to the background and foreground respectively. This algorithm is tested on several test images from HEVC test sequences and is shown to have superior performance over other methods, such as the hierarchical k-means clustering in DjVu. This segmentation algorithm can also be used for text extraction, video compression and medical image segmentation.Comment: Asilomar Conference on Signals, Systems and Computers, IEEE, 2015, (to Appear

    Comparative study of motion detection methods for video surveillance systems

    Full text link
    The objective of this study is to compare several change detection methods for a mono static camera and identify the best method for different complex environments and backgrounds in indoor and outdoor scenes. To this end, we used the CDnet video dataset as a benchmark that consists of many challenging problems, ranging from basic simple scenes to complex scenes affected by bad weather and dynamic backgrounds. Twelve change detection methods, ranging from simple temporal differencing to more sophisticated methods, were tested and several performance metrics were used to precisely evaluate the results. Because most of the considered methods have not previously been evaluated on this recent large scale dataset, this work compares these methods to fill a lack in the literature, and thus this evaluation joins as complementary compared with the previous comparative evaluations. Our experimental results show that there is no perfect method for all challenging cases, each method performs well in certain cases and fails in others. However, this study enables the user to identify the most suitable method for his or her needs.Comment: 69 pages, 18 figures, journal pape

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866
    corecore