2 research outputs found

    Canonical Coalitional Games vs. Coalition Formation Games for Power Exchange Management of Networked Microgrids

    Get PDF
    The concept of networked microgrids, which refers to a cluster of microgrids connected with each other, has emerged in the literature as a consequence of the increasing development of renewable energy. Energy management systems have been developed for planning, monitoring and controlling the power exchange into networked microgrids. Their main components are optimization algorithms for power exchange management. Several optimization algorithms based on coalition formation games were proposed to minimize distribution and transformation power loss of networked microgrids. Unlike these approaches, this paper proposes a non-lineal model based on canonical coalitional game for power exchange management of networked microgrids. To show the performance of the proposed model, results of the model and results of an algorithm based on coalition formation games recently reported in the literature are com-pared with. The main conclusion of this work is, when the objective is to minimize total power losses, the problem of power exchange management of networked microgrids should be modelled as a canonical coalition games and not as coalition formation games.Sociedad Argentina de Inform谩tica e Investigaci贸n Operativ

    Canonical Coalitional Games vs. Coalition Formation Games for Power Exchange Management of Networked Microgrids

    Get PDF
    The concept of networked microgrids, which refers to a cluster of microgrids connected with each other, has emerged in the literature as a consequence of the increasing development of renewable energy. Energy management systems have been developed for planning, monitoring and controlling the power exchange into networked microgrids. Their main components are optimization algorithms for power exchange management. Several optimization algorithms based on coalition formation games were proposed to minimize distribution and transformation power loss of networked microgrids. Unlike these approaches, this paper proposes a non-lineal model based on canonical coalitional game for power exchange management of networked microgrids. To show the performance of the proposed model, results of the model and results of an algorithm based on coalition formation games recently reported in the literature are com-pared with. The main conclusion of this work is, when the objective is to minimize total power losses, the problem of power exchange management of networked microgrids should be modelled as a canonical coalition games and not as coalition formation games.Sociedad Argentina de Inform谩tica e Investigaci贸n Operativ
    corecore