4 research outputs found

    Real-time computation of distance to dynamic obstacles with multiple depth sensors

    Get PDF
    We present an efficient method to evaluate distances between dynamic obstacles and a number of points of interests (e.g., placed on the links of a robot) when using multiple depth cameras. A depth-space oriented discretization of the Cartesian space is introduced that represents at best the workspace monitored by a depth camera, including occluded points. A depth grid map can be initialized off line from the arrangement of the multiple depth cameras, and its peculiar search characteristics allows fusing on line the information given by the multiple sensors in a very simple and fast way. The real-time performance of the proposed approach is shown by means of collision avoidance experiments where two Kinect sensors monitor a human-robot coexistence task

    Real-time collision detection and distance computation on point cloud sensor data

    No full text
    Most prior techniques for proximity computations are designed for synthetic models and assume exact geometric representations. However, real robots construct representations of the environment using their sensors, and the generated representations are more cluttered and less precise than synthetic models. Furthermore, this sensor data is updated at high frequency. In this paper, we present new collision- and distance-query algorithms, which can efficiently handle large amounts of point cloud sensor data received at real-time rates. We present two novel techniques to accelerate the computation of broad-phase data structures: 1) we present a progressive technique that incrementally computes a high-quality dynamic AABB tree for fast culling, and 2) we directly use an octree representation of the point cloud data as a proximity data structure. We assign a probability value to each leaf node of the tree, and the algorithm computes the nodes corresponding to high collision probability. In practice, our new approaches can be an order of magnitude faster than previous methods. We demonstrate the performance of the new methods on both synthetic data and on sensor data collected using a Kinect™ for motion planning for a mobile manipulator robot. © 2013 IEEE.link_to_subscribed_fulltex

    High-DOF Motion Planning in Dynamic Environments using Trajectory Optimization

    Get PDF
    Motion planning is an important problem in robotics, computer-aided design, and simulated environments. Recently, robots with a high number of controllable joints are increasingly used for different applications, including in dynamic environments with humans and other moving objects. In this thesis, we address three main challenges related to motion planning algorithms for high-DOF robots in dynamic environments: 1) how to compute a feasible and constrained motion trajectory in dynamic environments; 2) how to improve the performance of realtime computations for high-DOF robots; 3) how to model the uncertainty in the environment representation and the motion of the obstacles. We present a novel optimization-based algorithm for motion planning in dynamic environments. We model various constraints corresponding to smoothness, as well as kinematics and dynamics bounds, as a cost function, and perform stochastic trajectory optimization to compute feasible high-dimensional trajectories. In order to handle arbitrary dynamic obstacles, we use a replanning framework that interleaves planning with execution. We also parallelize our approach on multiple CPU or GPU cores to improve the performance and perform realtime computations. In order to deal with the uncertainty of dynamic environments, we present an efficient probabilistic collision detection algorithm that takes into account noisy sensor data. We predict the future obstacle motion as Gaussian distributions, and compute the bounded collision probability between a high-DOF robot and obstacles. We highlight the performance of our algorithms in simulated environments as well as with a 7-DOF Fetch arm.Doctor of Philosoph
    corecore