2,659 research outputs found

    Pedagogical Techniques Employed by the Science Television Show MythBusters

    Get PDF
    The long-running Discovery Channel science television show MythBusters has proven itself to be far more than just a source of weekly entertainment. The popular cable program employs an array of sophisticated pedagogical techniques to communicate scientific concepts to its audience. These techniques include: achieving active learning, accommodating different learning styles, avoiding jargon, employing repetition to ensure comprehension, anthropomorphizing physical phenomena, using captivating demonstrations, cultivating an enthusiastic disposition, and increasing intrinsic motivation to learn. In this content analysis, episodes from the show’s 10-year history were methodically examined for these instructional techniques. MythBusters represents an untapped source of pedagogical techniques educators at all levels may consider availing themselves of in their tireless effort to better reach their students. Science educators in particular may look to MythBusters for inspiration and guidance in how to incorporate these pedagogical techniques into their own teaching and help their students in the learning process

    TableHop: an actuated fabric display using transparent electrodes

    Get PDF
    We present TableHop, a tabletop display that provides controlled self-actuated deformation and vibro-tactile feedback to an elastic fabric surface while retaining the ability for high-resolution visual projection. The TableHop surface is made of a highly stretchable pure spandex fabric that is electrostatically actuated using electrodes mounted on its underside. We use transparent indium tin oxide electrodes and high-voltage modulation to create controlled surface deformations. This setup actuates pixels and creates deformations in the fabric up to ±\pm 5mm. Since the electrodes are transparent, the fabric surface can function as a diffuser for rear-projected visual images, and avoid occlusion by users. Users can touch and interact with the fabric to create expressive interactions as with any fabric based shape-changing interface. By using frequency modulation in the high-voltage circuit, we can also create localised tactile sensations on the user's finger-tip when touching the surface. We provide detailed simulation results of the shape of the surface deformation and the frequency of the haptic vibrations. These results can be used to build prototypes of different sizes and form-factors. We finally create a working prototype of TableHop that has 30×\times40 cm surface area and uses a grid of 3×\times3 transparent electrodes. Our prototype uses a maximum of 2.2 mW and can create tactile vibrations of up to 20 HzHz. TableHop can be scaled to large interactive surfaces and integrated with other objects and devices. TableHop will improve user interaction experience on 2.5D deformable displays

    Scientific Reification

    Get PDF
    In the Embodied Earth installation, part of the Art and Light Exhibition held 15-30 August 2015 in the HD Skinner Annex of the Otago Museum in Dunedin, the viewer sensorially experiences lightning strikes in synchronicity with actual terrestrial lightning events occurring over a large swathe of the Earth’s surface via a live data stream. Viewers face a large projection screen on which they can see themselves in silhouette. My design intends the viewer to don a haptic jacket and move freely, as a live data stream, translated into animated lightning flashes, tracks the viewer’s screen position, appearing to strike the wearer’s upper body. In association with with the visual cue, the viewer would feel a strong vibration at the point of apparent lightning contact, concurrent with a synchronised subwoofer signal that pulsates their body with a short burst of low-frequency sound

    Space colonization for the procedural generation of lightning

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaThe procedural generation of geometry within the space of computer graphics has been a topic of study for quite some time, benefiting from a more unpredictable brand of randomness. Similarly, the exploration of lighting as a phenomenon within virtual space has been a field of study of comparable age. Despite its age and early adoption, there is a surprising lack of research in emulating the phenomenon of lighting past its interactions with the world. Most implementations of procedurally generated lightning within video games are based on randomized data trees. When part of the skybox, 2D meshes or textures are randomly selected from a pre-made pool. There are, however, methods based entirely on the dielectric breakdown model, using approximations to solve a Laplacian equation. This dissertation aims to present an alternative approach to the randomized and procedural generation of lightning bolts based on the Space Colonization algorithm. While the algorithm was first conceived for use in botanical applications, modeling the growth of biological structures, the similarities between the results produced by the dielectric breakdown model and botanic modeling algorithms coupled with the visual likeness of a lightning bolt and certain trees, made for solid groundwork upon which to establish this unique approach. As such, this work largely aims to be a first step into this particular realm, showing Space Colonization as a suitable algorithm for this specific purpose. That being said, a large portion of time was spent iterating, modifying and experimenting with ideas that were either discarded or adapted, an effort primarily dedicated towards controlling and stifling the possible growth of branches in ways beyond the reduction of attractors. The original algorithm was altered, focus put especially on the creation of a singular channel at a time, mixing discoveries from previous research with the work done on manipulating Space Colonization. Instead of the venation patterns observed with the original work, the stifling of any growth means that each node has a chance, when created, of sprouting a branch and each branch is, in turn, a different, modified instance of the same underlying concept providing an additional level of control. Effort was equally placed on showcasing different properties inherent to a lightning strike, such as its iterative construction when descending from its origin. In the rendering section, along with recreating the bloom and glow effect seen in previous works, effort was put into recreating the strobing observed in capturing slow-motion footage of lightning bolts with special detail given to this. In addition, parameters were joined with a waypoint system to allow for a great degree of freedom when generating new bolts.A geração iterativa de geometria no contexto de computação gráfica é um tópico de estudo à já algum tempo apesar de usado em apenas contextos específicos, um ramo que benefícia de um tipo de aleatoriedade imprevisível. Similarmente, a exploração de relâmpagos como um fenómeno em espaço virtual é uma faceta de idade comparável. Apesar disto, o foco quando tratando relâmpagos tem caído marioritariamente nos seus efeitos após impacto. Estudos têm sido conduzidos no âmbito de mitigar o dano causado por estes em fuselagem de aeronaves e analizar o impacto de trovoada em estruturas críticas. No entanto, existe uma falta de investigação sobre a emulação deste fenómeno barra as suas interações com o mundo. A maioria das implementações iterativas em video jogos são baseadas em árvores de dados. Quando fazem parte do cenário, são marioritariamente meshes ou texturas 2D selecionas aleatoriamente de um conjunto. Existem, no entanto, métodos baseados num modelo de colapso elétrico usando apróximações a uma equação de Laplace. Esta dissertação tem como foco apresentar uma alternativa para a geração aleatória e iterativa de relâmpagos baseada no algoritmo de Space Colonization. Apesar deste algoritmo ter sido concebido para uso botânico, modelando o crescimento de estruturas biológicas, as similaridades entre os resultados obtidos pelo modelo de colapso elétrico e estes algoritmos de modelagem, quando considerados com a semelhança entre certos relâmpagos e árvores, constroem uma fundação sólida para o tópico. Neste âmbito, este trabalho é um primeiro passo que tem o intuito de mostrar a capacidade do algoritmo de Space Colonization em simular relâmpagos. Dito isto, uma grande porção do tempo de desenvolvimento dobrou-se sobre a iteração modificação e experimentação de ideias que foram discardadas ou adaptadas, um esforço primariamente dedicado em controlar o crescimento de ramos sem reduzir o número de atratores. O algoritmo original foi alterado, focando especialmente na criação de um único canal e fazendo uso de conhecimento prévio, oriundo de trabalho e investigação feita sobre manipulação de Space Colonization. Em vez de padrões de venação, observados no trabalho original, o impedimento de qualquer crescimento significa que cada nodo tem uma probabilidade, quando criado, de dar origem a um ramo e que cada ramo é uma instância diferente e modificada do mesmo conceito, algo que cria um nível de controlo mais profundo. Um esforço extra foi, também, realizado com o intuito de mostrar todas as propriedades diferentes, inerentes a um relâmpago tal como a construção iterativa durante a sua travessia. Na parte de renderização, foram recriados efeitos de brilho e bloom vistos em trabalhos prévios. Foi também dada especial atenção à recriação do efeito estroboscópico observado durante a análise de imagens em câmera lenta, algo que se tornou no foco principal desta parte. Adicionalmente, a adição de parâmetros foi conjugada com um sistema de pontos que dá um grau superior de liberdade ao utilizador

    Spartan Daily, October 24, 1979

    Get PDF
    Volume 73, Issue 36https://scholarworks.sjsu.edu/spartandaily/6534/thumbnail.jp

    Girodet's galvanized bodies

    Get PDF
    PostprintPeer reviewe
    corecore