4 research outputs found

    Real-time Virtual Object Insertion for Moving 360° Videos

    Get PDF
    We propose an approach for real-time insertion of virtual objects into pre-recorded moving-camera 360° video. First, we reconstruct camera motion and sparse scene content via structure from motion on stitched equirectangular video. Then, to plausibly reproduce real-world lighting conditions for virtual objects, we use inverse tone mapping to recover high dynamic range environment maps which vary spatially along the camera path. We implement our approach into the Unity rendering engine for real-time virtual object insertion via differential rendering, with dynamic lighting, image-based shadowing, and user interaction. This expands the use and flexibility of 360° video for interactive computer graphics and visual effects applications

    Real-time Virtual Object Insertion for Moving 360° Videos

    Get PDF
    We propose an approach for real-time insertion of virtual objects into pre-recorded moving-camera 360° video. First, we reconstruct camera motion and sparse scene content via structure from motion on stitched equirectangular video. Then, to plausibly reproduce real-world lighting conditions for virtual objects, we use inverse tone mapping to recover high dynamic range environment maps which vary spatially along the camera path. We implement our approach into the Unity rendering engine for real-time virtual object insertion via differential rendering, with dynamic lighting, image-based shadowing, and user interaction. This expands the use and flexibility of 360° video for interactive computer graphics and visual effects applications

    Capture, Reconstruction, and Representation of the Visual Real World for Virtual Reality

    Get PDF
    We provide an overview of the concerns, current practice, and limitations for capturing, reconstructing, and representing the real world visually within virtual reality. Given that our goals are to capture, transmit, and depict complex real-world phenomena to humans, these challenges cover the opto-electro-mechanical, computational, informational, and perceptual fields. Practically producing a system for real-world VR capture requires navigating a complex design space and pushing the state of the art in each of these areas. As such, we outline several promising directions for future work to improve the quality and flexibility of real-world VR capture systems

    Graphics Insertions into Real Video for Market Research

    Get PDF
    corecore