3,834 research outputs found

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Get PDF
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    SigSegment: A Signal-Based Segmentation Algorithm for Identifying Anomalous Driving Behaviours in Naturalistic Driving Videos

    Full text link
    In recent years, distracted driving has garnered considerable attention as it continues to pose a significant threat to public safety on the roads. This has increased the need for innovative solutions that can identify and eliminate distracted driving behavior before it results in fatal accidents. In this paper, we propose a Signal-Based anomaly detection algorithm that segments videos into anomalies and non-anomalies using a deep CNN-LSTM classifier to precisely estimate the start and end times of an anomalous driving event. In the phase of anomaly detection and analysis, driver pose background estimation, mask extraction, and signal activity spikes are utilized. A Deep CNN-LSTM classifier was applied to candidate anomalies to detect and classify final anomalies. The proposed method achieved an overlap score of 0.5424 and ranked 9th on the public leader board in the AI City Challenge 2023, according to experimental validation results

    Automatic driver distraction detection using deep convolutional neural networks

    Get PDF
    Recently, the number of road accidents has been increased worldwide due to the distraction of the drivers. This rapid road crush often leads to injuries, loss of properties, even deaths of the people. Therefore, it is essential to monitor and analyze the driver's behavior during the driving time to detect the distraction and mitigate the number of road accident. To detect various kinds of behavior like- using cell phone, talking to others, eating, sleeping or lack of concentration during driving; machine learning/deep learning can play significant role. However, this process may need high computational capacity to train the model by huge number of training dataset. In this paper, we made an effort to develop CNN based method to detect distracted driver and identify the cause of distractions like talking, sleeping or eating by means of face and hand localization. Four architectures namely CNN, VGG-16, ResNet50 and MobileNetV2 have been adopted for transfer learning. To verify the effectiveness, the proposed model is trained with thousands of images from a publicly available dataset containing ten different postures or conditions of a distracted driver and analyzed the results using various performance metrics. The performance results showed that the pre-trained MobileNetV2 model has the best classification efficiency. © 2022 The Author(s

    Improving automatic detection of driver fatigue and distraction using machine learning

    Full text link
    Changes and advances in information technology have played an important role in the development of intelligent vehicle systems in recent years. Driver fatigue and distracted driving are important factors in traffic accidents. Thus, onboard monitoring of driving behavior has become a crucial component of advanced driver assistance systems for intelligent vehicles. In this article, we present techniques for simultaneously detecting fatigue and distracted driving behaviors using vision-based and machine learning-based approaches. In driving fatigue detection, we use facial alignment networks to identify facial feature points in the images, and calculate the distance of the facial feature points to detect the opening and closing of the eyes and mouth. Furthermore, we use a convolutional neural network (CNN) based on the MobileNet architecture to identify various distracted driving behaviors. Experiments are performed on a PC based setup with a webcam and results are demonstrated using public datasets as well as custom datasets created for training and testing. Compared to previous approaches, we build our own datasets and provide better results in terms of accuracy and computation time.Comment: Master's thesis, 55 page

    Driver activity recognition for intelligent vehicles: a deep learning approach

    Get PDF
    Driver decisions and behaviors are essential factors that can affect the driving safety. To understand the driver behaviors, a driver activities recognition system is designed based on the deep convolutional neural networks (CNN) in this study. Specifically, seven common driving activities are identified, which are the normal driving, right mirror checking, rear mirror checking, left mirror checking, using in-vehicle radio device, texting, and answering the mobile phone, respectively. Among these activities, the first four are regarded as normal driving tasks, while the rest three are classified into the distraction group. The experimental images are collected using a low-cost camera, and ten drivers are involved in the naturalistic data collection. The raw images are segmented using the Gaussian mixture model (GMM) to extract the driver body from the background before training the behavior recognition CNN model. To reduce the training cost, transfer learning method is applied to fine tune the pre-trained CNN models. Three different pre-trained CNN models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted and evaluated. The detection results for the seven tasks achieved an average of 81.6% accuracy using the AlexNet, 78.6% and 74.9% accuracy using the GoogLeNet and ResNet50, respectively. Then, the CNN models are trained for the binary classification task and identify whether the driver is being distracted or not. The binary detection rate achieved 91.4% accuracy, which shows the advantages of using the proposed deep learning approach. Finally, the real-world application are analysed and discussed

    Driver Behavior Recognition via Interwoven Deep Convolutional Neural Nets With Multi-Stream Inputs

    Get PDF
    Recognizing driver behaviors is becoming vital for in-vehicle systems that seek to reduce the incidence of car accidents rooted in cognitive distraction. In this paper, we harness the exceptional feature extraction abilities of deep learning and propose a dedicated Interwoven Deep Convolutional Neural Network (InterCNN) architecture to tackle the accurate classification of driver behaviors in real-time. The proposed solution exploits information from multi-stream inputs, i.e., in-vehicle cameras with different fields of view and optical flows computed based on recorded images, and merges through multiple fusion layers abstract features that it extracts. This builds a tight ensembling system, which significantly improves the robustness of the model. We further introduce a temporal voting scheme based on historical inference instances, in order to enhance accuracy. Experiments conducted with a real world dataset that we collect in a mock-up car environment demonstrate that the proposed InterCNN with MobileNet convolutional blocks can classify 9 different behaviors with 73.97% accuracy, and 5 aggregated behaviors with 81.66% accuracy. Our architecture is highly computationally efficient, as it performs inferences within 15ms, which satisfies the real-time constraints of intelligent cars. In addition, our InterCNN is robust to lossy input, as the classification remains accurate when two input streams are occluded
    • …
    corecore