13 research outputs found

    Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification

    Full text link
    An efficient and effective person re-identification (ReID) system relieves the users from painful and boring video watching and accelerates the process of video analysis. Recently, with the explosive demands of practical applications, a lot of research efforts have been dedicated to heterogeneous person re-identification (Hetero-ReID). In this paper, we provide a comprehensive review of state-of-the-art Hetero-ReID methods that address the challenge of inter-modality discrepancies. According to the application scenario, we classify the methods into four categories -- low-resolution, infrared, sketch, and text. We begin with an introduction of ReID, and make a comparison between Homogeneous ReID (Homo-ReID) and Hetero-ReID tasks. Then, we describe and compare existing datasets for performing evaluations, and survey the models that have been widely employed in Hetero-ReID. We also summarize and compare the representative approaches from two perspectives, i.e., the application scenario and the learning pipeline. We conclude by a discussion of some future research directions. Follow-up updates are avaible at: https://github.com/lightChaserX/Awesome-Hetero-reIDComment: Accepted by IJCAI 2020. Project url: https://github.com/lightChaserX/Awesome-Hetero-reI

    Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Existing approaches have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-identification problem, where a new camera may be temporarily inserted into an existing system to get additional information. To address such a novel and very practical problem, we propose an unsupervised adaptation scheme for re-identification models in a dynamic camera network. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with a newly introduced target camera, without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Extensive experiments on four benchmark datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art unsupervised learning based alternatives whilst being extremely efficient to compute.Comment: CVPR 2017 Spotligh

    Improving person re-identification with temporal constraints

    Get PDF
    In this paper we introduce an image-based person re-identification dataset collected across five non-overlapping camera views in the large and busy airport in Dublin, Ireland. Unlike all publicly available image-based datasets, our dataset contains timestamp information in addition to frame number, and camera and person IDs. Also our dataset has been fully anonymized to comply with modern data privacy regulations. We apply state-of-the-art person re-identification models to our dataset and show that by leveraging the available timestamp information we are able to achieve a significant gain of 37.43% in mAP and a gain of 30.22% in Rank1 accuracy. We also propose a Bayesian temporal re-ranking post-processing step, which further adds a 10.03% gain in mAP and 9.95% gain in Rank1 accuracy metrics. This work on combining visual and temporal information is not possible on other image-based person re-identification datasets. We believe that the proposed new dataset will enable further development of person re-identification research for challenging real-world applications

    Improving person re-Identification with temporal constraints

    Get PDF
    In this paper we introduce an image-based person re-identification dataset collected across five non-overlapping camera views in the large and busy airport in Dublin, Ireland. Unlike all publicly available image-based datasets, our dataset contains timestamp information in addition to frame number, and camera and person IDs. Also our dataset has been fully anonymized to comply with modern data privacy regulations. We apply state-of-the-art person re-identification models to our dataset and show that by leveraging the available timestamp information we are able to achieve a significant gain of 37.43% in mAP and a gain of 30.22% in Rank1 accuracy. We also propose a Bayesian temporal re-ranking post-processing step, which further adds a 10.03% gain in mAP and 9.95% gain in Rank1 accuracy metrics. This work on combining visual and temporal information is not possible on other image-based person re-identification datasets. We believe that the proposed new dataset will enable further development of person re-identification research for challenging real-world applications

    Multi-camera trajectory forecasting with trajectory tensors

    Get PDF
    We introduce the problem of multi-camera trajectory forecasting (MCTF), which involves predicting the trajectory of a moving object across a network of cameras. While multi-camera setups are widespread for applications such as surveillance and traffic monitoring, existing trajectory forecasting methods typically focus on single-camera trajectory forecasting (SCTF), limiting their use for such applications. Furthermore, using a single camera limits the field-of-view available, making long-term trajectory forecasting impossible. We address these shortcomings of SCTF by developing an MCTF framework that simultaneously uses all estimated relative object locations from several viewpoints and predicts the object's future location in all possible viewpoints. Our framework follows a Which-When-Where approach that predicts in which camera(s) the objects appear and when and where within the camera views they appear. To this end, we propose the concept of trajectory tensors: a new technique to encode trajectories across multiple camera views and the associated uncertainties. We develop several encoder-decoder MCTF models for trajectory tensors and present extensive experiments on our own database (comprising 600 hours of video data from 15 camera views) created particularly for the MCTF task. Results show that our trajectory tensor models outperform coordinate trajectory-based MCTF models and existing SCTF methods adapted for MCTF
    corecore