2,811 research outputs found

    Complex influence propagation based on trust-aware dynamic linear threshold models

    Get PDF
    Abstract To properly capture the complexity of influence propagation phenomena in real-world contexts, such as those related to viral marketing and misinformation spread, information diffusion models should fulfill a number of requirements. These include accounting for several dynamic aspects in the propagation (e.g., latency, time horizon), dealing with multiple cascades of information that might occur competitively, accounting for the contingencies that lead a user to change her/his adoption of one or alternative information items, and leveraging trust/distrust in the users' relationships and its effect of influence on the users' decisions. To the best of our knowledge, no diffusion model unifying all of the above requirements has been developed so far. In this work, we address such a challenge and propose a novel class of diffusion models, inspired by the classic linear threshold model, which are designed to deal with trust-aware, non-competitive as well as competitive time-varying propagation scenarios. Our theoretical inspection of the proposed models unveils important findings on the relations with existing linear threshold models for which properties are known about whether monotonicity and submodularity hold for the corresponding activation function. We also propose strategies for the selection of the initial spreaders of the propagation process, for both non-competitive and competitive influence propagation tasks, whose goal is to mimic contexts of misinformation spread. Our extensive experimental evaluation, which was conducted on publicly available networks and included comparison with competing methods, provides evidence on the meaningfulness and uniqueness of our models

    Timeliness: A New Design Metric and a New Attack Surface

    Full text link
    As the landscape of time-sensitive applications gains prominence in 5G/6G communications, timeliness of information updates at network nodes has become crucial, which is popularly quantified in the literature by the age of information metric. However, as we devise policies to improve age of information of our systems, we inadvertently introduce a new vulnerability for adversaries to exploit. In this article, we comprehensively discuss the diverse threats that age-based systems are vulnerable to. We begin with discussion on densely interconnected networks that employ gossiping between nodes to expedite dissemination of dynamic information in the network, and show how the age-based nature of gossiping renders these networks uniquely susceptible to threats such as timestomping attacks, jamming attacks, and the propagation of misinformation. Later, we survey adversarial works within simpler network settings, specifically in one-hop and two-hop configurations, and delve into adversarial robustness concerning challenges posed by jamming, timestomping, and issues related to privacy leakage. We conclude this article with future directions that aim to address challenges posed by more intelligent adversaries and robustness of networks to them

    Countering Misinformation on Social Networks Using Graph Alterations

    Full text link
    We restrict the propagation of misinformation in a social-media-like environment while preserving the spread of correct information. We model the environment as a random network of users in which each news item propagates in the network in consecutive cascades. Existing studies suggest that the cascade behaviors of misinformation and correct information are affected differently by user polarization and reflexivity. We show that this difference can be used to alter network dynamics in a way that selectively hinders the spread of misinformation content. To implement these alterations, we introduce an optimization-based probabilistic dropout method that randomly removes connections between users to achieve minimal propagation of misinformation. We use disciplined convex programming to optimize these removal probabilities over a reduced space of possible network alterations. We test the algorithm's effectiveness using simulated social networks. In our tests, we use both synthetic network structures based on stochastic block models, and natural network structures that are generated using random sampling of a dataset collected from Twitter. The results show that on average the algorithm decreases the cascade size of misinformation content by up to 70%70\% in synthetic network tests and up to 45%45\% in natural network tests while maintaining a branching ratio of at least 1.51.5 for correct information.Comment: 10 pages, 6 figure
    • …
    corecore