1 research outputs found

    Real-time workload classification during driving using hyperNetworks

    Get PDF
    Classifying human cognitive states from behavioral and physiological signals is a challenging problem with important applications in robotics. The problem is challenging due to the data variability among individual users, and sensor artifacts. In this work, we propose an end-to-end framework for real-time cognitive workload classification with mixture Hyper Long Short Term Memory Networks (m-HyperLSTM), a novel variant of HyperNetworks. Evaluating the proposed approach on an eye-gaze pattern dataset collected from simulated driving scenarios of different cognitive demands, we show that the proposed framework outperforms previous baseline methods and achieves 83.9% precision and 87.8% recall during test. We also demonstrate the merit of our proposed architecture by showing improved performance over other LSTM-based method
    corecore