
Real-Time Workload Classification during Driving using HyperNetworks

Ruohan Wang and Pierluigi V. Amadori and Yiannis Demiris.

Abstract— Classifying human cognitive states from behav-
ioral and physiological signals is a challenging problem with
important applications in robotics. The problem is challenging
due to the data variability among individual users, and sensor
artefacts. In this work, we propose an end-to-end framework for
real-time cognitive workload classification with mixture Hyper
Long Short Term Memory Networks (m-HyperLSTM), a novel
variant of HyperNetworks. Evaluating the proposed approach
on an eye-gaze pattern dataset collected from simulated driving
scenarios of different cognitive demands, we show that the
proposed framework outperforms previous baseline methods
and achieves 83.9% precision and 87.8% recall during test.
We also demonstrate the merit of our proposed architecture
by showing improved performance over other LSTM-based
methods.

I. INTRODUCTION

Classifying human cognitive states is an important problem
with many applications in robotics. In human-robot interaction,
the ability to predict human intentions enables robots to
perform socially compliant navigation and collaborate with
humans [1], [2], [3], [4]. For intelligent vehicles, intention or
distraction prediction allows the systems to alert users before
potentially dangerous maneuvers [5], [6], [7]. Further, casting
driving assistance as a problem of human-in-the-loop control,
users’ cognitive states provide input for deriving control
policies to manage user interfaces and take over control if
necessary [8], [9], [10], [11].

Previous studies show that physiological and behavioral
signals correlate with cognitive states. For instance, [6] used
head movements to predict intention in driving, while [8]
showed real-time quantitative correlation between stress and
physiological signals including Electrocardiogram (ECG),
skin conductance, and respiration in different individuals.
Common challenges demonstrated in those studies are data
variability among individuals and sensor artefacts. Hand-
crafted features are commonly employed to improve data
quality and summarize the data into fixed-size feature
vectors suitable for classification algorithms such as logistic
regression and Support Vector Machine (SVM). However, it
is desirable for a model to 1) automatically learn feature rep-
resentations from data to reduce manual feature engineering,
and 2) be sufficiently flexible to tackle data variability.

Towards the goals stated above, we propose a framework
for real-time cognitive workload classification using mixture
Hyper Long Short Term Memory Networks (m-HyperLSTM),
a novel variant of HyperNetworks [12] based on LSTM [13].
HyperLSTM is a class of HyperNetworks wherein the model

Authors are with the Personal Robotics Lab, Department of Electrical
and Electronic Engineering, Imperial College London, UK {r.wang16,
p.amadori, y.demiris}@imperial.ac.uk

Infrared Eye Tracker

Driving Environment

Simulator Setup

Fig. 1. Top: Simulated driving environment. Numbered obstacles are placed
in three lanes. Participants drive along the road to avoid obstacles, and
perform mental tasks, while their performance data, and their instantaneous
gaze locations are recorded. Bottom: Simulator physical setup.

parameters adapt based on the input. Our choice of the model
is motivated by the hypothesis that the adaptive nature of
HyperNetworks can be exploited to tackle data variability
while LSTMs are known for their ability to capture long range
dependency and learning useful feature representations from
data [13]. We formulate the classification task as learning a
sequence-to-sequence mapping.

We collect an eye-gaze location dataset from simulated
driving whereby 20 participants complete tasks of different
cognitive demands. We then evaluate our proposed approach
on the dataset for binary classification of cognitive workload
levels (low and high). The classification is challenging as the
dataset is both noisy and exhibits varying visual scanning
patterns across individuals, as shown in Fig. 2. Similar to
[5], we choose eye gaze as input because eye tracking is less
intrusive compared to skin conductance or ECG tracking, and
readily available through consumer products (e.g. cameras
in natural environments [14] or smart phones [15], and
has wider applicability beyond driving. We stress that the
proposed framework is generic to different sensor modalities
and multi-class classification, and we intend to explore sensor
fusion and more fine-grained cognitive states classification
in future works, including the usage of skin conductance,
ECG data and extending to multi-class classifications with
different workload levels.

We report experiment results comparing m-HyperLSTM
with different baseline models, including state-of-the-art



sequence models such as HyperLSTM [12], and LSTM [6],
[7], as well as classical models such as SVM [16], [5],
and logistic regression [17], [16]. The proposed approach
outperforms the baselines and achieves a 83.9% precision
and 87.8% recall on the test sets. Improved performance
over HyperLSTM and LSTM validates the efficacy of the
proposed architecture in tackling the variability in the dataset.
Key contributions of the paper are:

• We introduce m-HyperLSTM for real-time cognitive
workload estimation. The architecture jointly learns
feature representations and adapts itself based on input.
Our contribution is a novel weight generation scheme
inspired by the idea of mixture models, aimed at
tackling data variability and improving generalization
performance.

• We evaluate the performance of the proposed model
against baseline approaches using multiple evaluation
metrics, including F1-score, precision, and recall.

• We validate the proposed architecture ability to handle
data variability in simulated driving tasks, in comparison
with LSTM variants commonly used for sequence
modeling.

II. RELATED WORK

Our work is related to previous works on cognitive states
classification, and on Recurrent Neural Networks (RNNs) for
sequence prediction.

Using physiological signals for cognitive workload classifi-
cation presents multiple challenges. Sophisticated engineering
is often required to improve data quality and extract useful
features from raw senor signals (e.g. [8], [5], [16]. On the
other hand, the extent of statistical correlations between cogni-
tive workload and physiological signals can vary significantly
among experiment participants [8]. One possible solution
to data variability is personalized models, as seen in [18],
[17]. However, this approach may become impractical as
data collection and model training are required for every new
user. Similar to [6], [7], our proposed model aims to learn
feature representations directly from data. In addition, the
adaptive nature of the proposed model directly tackle data
variability. Our experiments demonstrate that adaptive models
outperform the static ones, hence suggesting a viable generic
technique for tackling data variability found in physiological
signals.

LSTM Networks [13] and HyperNetworks [12] are the
core components of the proposed model. LSTM Networks
were designed to capture long-range dependency within
input sequences, and have been shown effective across
various sequence modeling tasks, including natural language
processing [19] and robotic perception [20]. HyperNetworks
refer to the general approach of generating the weights of
a network by another network. Specifically, HyperLSTM
extends LSTM by using an auxiliary LSTM to dynamically
generate the weights for the main LSTM at each time
step, thus enabling the main LSTM to adapt itself based
on the input. HyperLSTM has been shown to outperform
LSTM in language modeling, handwriting generation and

Fig. 2. Scatter plot of instantaneous gaze locations of four participants
during low (blue) and high (green) workload situations. The plots highlight
that the dataset is challenging as eye gaze patterns differ among individuals.
Best viewed in color.

neural machine translation [12]. We introduce m-HyperLSTM
inspired by the idea of mixture models, to further exploit the
dynamic property of HyperNetworks for cognitive workload
classification.

III. METHOD

We cast the task of cognitive workload classification as su-
pervised learning. Given a dataset {(x1,x2, ...,xT )j ,yj}Nj=1

where xt denotes physiological signals at time t, y the target
workload level for the sequence, and T the sequence length,
we aim to learn a model θ that maximizes the probability
p(y|x1,..,T ). Instead of relying a single label, we follow [6]
to train our model using the following loss function in a
sequence-to-sequence manner

loss =

N∑
j=1

T∑
t=1

−e(t−T )logp(ykt |x<t) (1)

where x<t denotes the subsequence x1,..,t, and ykt the
probability of ground truth label computed by the model
at time t. In addition to encouraging the network to fix early
mistakes and reducing the possibility of over fitting when the
current context is insufficient for classification [6], the loss
function also reduces model variance (i.e., changing predicted
label between time steps). We implement our model as m-
HyperLSTM described in Section III-B.

A. Long Short-Term Memory Networks

LSTM is a RNN that implements a memory cell to maintain
contextual information over time, and thus captures long-range
dependencies in data sequences [13]. Given an input sequence
x1,x2, ...,xT , LSTM maps the input sequence to a sequence



of hidden states h1,h2, ...,hT via the following updates:

it = σ(W iht−1 + Iixt + bi) (2)

ft = σ(W fht−1 + Ifxt + bf ) (3)
ot = σ(W oht−1 + Ioxt + bo) (4)
ct = ft � ct−1 + it � tanh(W cht−1 + Icxt + bc) (5)
ht = ot � tanh(ct), (6)

where � denotes the element-wise product, σ and tanh
the element-wise sigmoid function and hyperbolic tangent
function respectively. W ∗, I∗, and b∗ are parameters to
be learned, with ∗ represents one of {i, c, f, o} gates. Eq.
5 shows that the memory ct of LSTM selectively carries
information from the previous time step by controlling what
to remember via the forget gate ft. The LSTM defined above
is similar to the architecture of [21] but without peep-hole
connections. For simplicity, we use the following shorthand
for LSTM updates:

(ht, ct) = LSTM(ht−1, ct−1,xt).

B. HyperLSTM

HyperNetworks is a family of network architectures that
generates the weights of a network via another network,
and has achieved state-of-the-art performance in various
sequence modeling tasks [12]. In particular, HyperLSTM
extends LSTM by using an auxiliary LSTM (LSTMaux)
to dynamically generate the weights of a main LSTM
(LSTMmain), shown in Fig. 3a. Following the update for
LSTMaux in [12], we have

x̂t =

(
xt

ht−1

)
(ĥt, ĉt) = LSTMaux(ĥt−1, ĉt−1, x̂t),

where the input x̂t to LSTMaux is the concatenation of the
current input xt and the hidden state ht−1 from LSTMmain.
HyperLSTM then parametrizes the weights of LSTMmain at
time t as a function of ĥt. For W ∗

t , it is defined as

z∗
h = W ∗

hzĥt + b∗h (7)
d∗
h = W ∗

hdz
∗
h (8)

W ∗
t =


(d∗
h)1W

∗
(1)

(d∗
h)2W

∗
(2)

...
(d∗
h)Nh

W ∗
(Nh)


,

(9)

where W ∗
(j) denotes the j-th row of W ∗, and W ∗

hz , b∗h and
W ∗

hd parameters to be learned. Both I∗
t and b∗t follow the

same update rule, omitted here for brevity. For further details
on HyperLSTM, we refer the readers to [12].

IV. M-HYPERLSTM

Many other mappings from current contexts to network
weights are possible. We present a novel scheme for weights
generation, inspired by the idea of mixture models, shown in
Fig. 3b. The scheme mixes Nz LSTMs before the nonlinearity
with their activation strengths (from 0 to 1) determined by

Ix

b

yt-1

xt-1̂ 

ht-1

ht-1̂ 

Ix

b

Wh

yt-1

xt-1̂ 

ht-1

z

xt-1

ht-2

Row-Scaling 

Weight Gen.

Eq. (7)-(9)

Mixture 

Weight Gen.

Eq. (11)-(13)

zb

zW

zI

ht-1̂ 

Wh

ht-2

xt-1
(a) (b)

Fig. 3. Comparison between the original HyperLSTM (left) and the proposed
m-HyperLSTM architecture (right). Key differences between the two are the
weight generation schemes and the associated parameter sharing. Here, xt

represents input at time t, ht denotes learned features/hidden states, and yt
identifies prediction output.

the current context. Analytically, we formulate the update
rule as

z = σ(W zĥt + bz) (10)
W ∗

t =<W ∗
z , z > (11)

I∗
t =< I∗

z , z > (12)
b∗t =< b∗z, z >, (13)

where W ∗
z ∈ RNh×Nh×Nz , I∗

z ∈ RNh×Nx×Nz , b∗z ∈
RNh×Nz . Nh, Nx and Nz denote the dimensions of ht, xt
and z respectively. < ◦, ◦ > denotes the dot product.

The key differences between the proposed weight gen-
eration scheme and the original scheme are 1) parameter
allocation and 2) increased regularization. Given a fixed
parameter budget, our model trade-offs the size of hidden
states for more expressive weight generation, while the
original model does the opposite. In addition, the proposed
scheme is more flexible as it may learn up to Nz components
by turning on and off each element of z independently,
which helps to prevent overfitting. If only a single element
of z is turned on at all time steps, our model reduces to a
standard LSTM Network. Further, our scheme shares z for all
weights generation to improve regularization. We found that
m-HyperLSTM outperforms the original in the experiments,
suggesting that expressive weight generation and additional
regularization contribute to the improved performance.

A. Network Architecture and Training Procedure

Given an input sequence {x1,x2, ...,xT }, we use the
proposed architecture to map the input sequence to a sequence
of hidden states {h1,h2, ...,hT }. We then project the hidden
states with a fully-connected layer with Rectified Linear Unit
(ReLU) nonlinearity, followed by a softmax layer to predict
the probability for each possible label.

yt = softmax(W2ReLU(W1ht + b1) + b2).

To stabilize hidden state dynamics, we apply layer nor-
malization as suggested in [12]. To improve generaliza-
tion, we employ L2 regularization and a label smoothing



technique [22]. The label smoothing technique penalizes
overconfident predictions by assigning 1− ε+ ε

K probability
to the correct label, and ε

K to all other labels, where ε is
a tunable hyper parameter, and K the number of possible
labels. Label smoothing replaces log p(ykt |x<t) in Eq. 1 with
cross-entropy H(p, yt) where p is the smoothed ground truth
distribution. Label smoothing naturally fits with cognitive
workload classification as there is inherent uncertainty in
the ground truth labels, given that cognitive workload is
not directly observable [23]. All models are trained with
Adam [24] with a fixed learning rate of 0.0001. We set
ε = 0.2 as recommended in [22].

V. EXPERIMENTS

We evaluate the proposed approach on the real-time
classification of cognitive workload using eye gaze pat-
terns. We detail in the following sections the experimental
procedures for collecting the gaze location dataset of the
participants under different cognitive workloads. We evaluate
our architecture on the collected dataset and compare it to
baseline methods, including LSTM [6], [7] HyperLSTM [12],
SVM [16], [5] and logistic regression [16], [17]. We aim to
address the following questions:

• Is m-HyperLSTM capable of learning useful feature
representations from eye gaze patterns and classifying
cognitive workload across individuals in driving scenar-
ios?

• How does m-HyperLSTM compare to the state-of-the-art
sequence models as well as classical methods in terms
of classification performance?

A. Participants

Twenty participants (12 males, 8 females, mean age 24.3,
standard deviation 3.2) with normal or corrected to normal
vision consented to participate in the experiment. After a
brief introduction to the experiment and calibration procedure,
participants were given a trial period to familiarize themselves
with the simulator environment before the actual experiment.

B. Setup

A realistic driving simulation was set up for the experiment
(Fig. 1). The environment comprised of monitors, a physical
simulator, and a remote eye tracker, mounted above the
steering wheel. We developed a customized simulated driving
environment based on the Unreal Engine (Fig. 1).

C. Experimental Procedure

Since cognitive workload is not directly observable [23],
we follow previous approaches [5], [8], [16], [11] to modulate
the cognitive workload experienced by the participants
by varying task difficulties using a validated experimental
approach for workload generation. The experiment includes
two scenarios with different workload levels (low and high),
and therefore binary ground truth labels. Though only a coarse
classification of cognitive workload is considered in this work,
the information is nevertheless an important input for assistive
robotics as demonstrated in [9], [10], [11]. We also intend
to explore more fine-grained classification in future works.

For both low and high workload scenarios, the primary
objective is to drive along a straight road and avoid stationary
rectangular obstacles. The obstacles are numbered 0 through
9 and placed at a regular interval (Fig. 1). Participants are
asked to maintain their speed between 120 and 130 km/h to
ensure a consistent workload level throughout the scenarios.
Participants were asked to repeat a scenario if their driving
speed deviated from the specified range by 10km/h. The road
is divided into three lanes and obstacles are randomly placed
at one of three lanes. Obstacles are designed to block an
entire lane, so that participants must steer to avoid them.
Furthermore, to ensure that a lane is not free of obstacles for
extended periods of time, thus reducing primary task difficulty,
we employ a custom-defined discrete distribution for obstacle
placement. Consider ci as the distance between the current
obstacle location and the previous obstacle location in lane i,
we define the obstacle placement probability distribution in
lane i as

p(i) =
eci/IntervalSize∑
i e
ci/IntervalSize

.

where IntervalSize represents the distance between two
adjacent obstacles. This ensures that a lane would almost
certainly be blocked if the lane has not been chosen for the
previous few obstacles.

We employ a visual ”n-back” task [25] as the secondary
objective for controlling the workload level of the participants.
The task induces different levels of cognitive workload by
varying the amount of information that participants need to
memorize in their working memory. This approach has been
validated in previous studies to provide a consistent level
of cognitive workload [25], [26], [27]. In our experiment,
low workload scenario is associated with a 0-back task (i.e.,
no memorization required), wherein participants are simply
required to determine the parity of the number on the nearest
obstacle ahead, and press a corresponding button located on
the steering wheel. In the high workload scenario, a 1-back
task is employed, so that participants need to recall the parity
of the number on the previous obstacle and, as they drive
past a new obstacle, press the corresponding button. It is
important to stress that the only difference between the two
scenarios is the additional cognitive workload stemming from
the memorization of numbers. This is pivotal for mitigating
the risk of the model classifying other variables, such as
additional visual stimuli rather than the cognitive workload.

D. Data Collection and Pre-processing

We collected instantaneous gaze locations in the reference
plane of the center monitor at 60 Hz. The data is recorded
in the format of {timestamp, x-coordinate, y-coordinate}.
For each sample, we augment the data with the following
attributes: distance from the previous sample (horizontal
distance, vertical distance and overall) and the instantaneous
speed from previous sample (horizontal speed, vertical speed
and overall). In total, each time step contains 8 attributes
{x-coordinate, y-coordinate, x-distance, y-distance, distance,
x-speed, y-speed, speed}.



For logistic regression and SVM, we reduce a temporal
sequence of attributes into a fixed-size feature vector by
capturing the central tendencies, variability, and extremes
of each attribute. These features include mean, standard
deviation, median, 25th and 75th percentiles, maximum,
minimum and range over a window size of tw seconds for
each attribute, resulting in a total of 8× 8 = 64 features. The
window size determines the amount of context available for
classification and directly impacts the real-timeliness of the
method. For LSTM-based models, the input sequence consists
of tw steps for the same window size, with the input for each
time step being the features defined above across a 1-second
window. All features are normalized to the interval [0, 1] and
we uniformly sample the input sequences using a sliding
window with 90% overlap to generate training samples for
all the models.

E. Evaluation Setup

We follow an evaluation framework similar to [28], [6].
The evaluation metrics include precision, recall, and F1-
score. We train on 80% of data, setting aside 10% each for
validation and testing using uniformly random splits. We use
the validation set to select the model with lowest validation
loss within 50 epochs of training, and the decision threshold
that maximizes the F1-score. For each model, we report the
mean and the standard deviation for each metrics over five
randomly sampled and non-overlapping test sets.

For SVM, we use a simple grid search to determine the best
hyper parameters (C = 5, γ = 0.01). For logistic regression,
L2 regularization is used. For all LSTM-based methods, the
training procedures and the usage of regularization techniques
are identical, as described in IV-A. We choose the network
sizes for all LSTM-based models such that each model
has approximately the same number of parameters and thus
similar model capacity. Specifically, we consider a LSTM
with a hidden state size of 100. For the original HyperLSTM,
we consider a LSTMmain with hidden state size of 75, a
LSTMaux with hidden state size of 16, and Nz = 4. For
the proposed model, we use a hidden state size of 32 for
LSTMmain and all other settings are identical to those of the
original HyperLSTM.

VI. RESULTS

We present the classification performance of all evaluated
models in Table I, for tw = 5s, 10s, 20s respectively. The
results show that m-HyperLSTM achieves the highest F1-
score across all window sizes. At 10s window, m-HyperLSTM
also outperforms all baselines for precision and recall.
Similar to the previous studies [5], [17], [6], our results
verify that that longer contextual information yield better
classification accuracies across all evaluated models. The
results also suggest that a trade-off between the timeliness and
performance of the classification. For real-time applications,
the results suggest that our method using a 10s window may
offer the best trade-off.

The results suggest that LSTM-based methods are a class
of flexible and expressive models capable of learning useful

Fig. 4. F1-score against decision threshold for the proposed method,
HyperLSTM and LSTM at tw = 10. The proposed method outperforms
the other two and achieves a fairly consistent F1-score across increasing
decision thresholds.

feature representations from gaze locations sequence and
outperform the baselines that utilize handcrafted features.
While it may be possible to match the performance of LSTM-
based methods with more sophisticated feature engineering,
the ability to automatically extract features from data is an
important advantage of LSTM-based methods. The improved
performance from m-HyperLSTM over the original HyperL-
STM validates the efficacy of the proposed weight generation
scheme, which uses more expressive weight generation and
additional regularization.

To further evaluate the performance of our model, we
show in Fig. 4 the impact of decision threshold on F1-score
for tw = 10s. Small variations in F1-score across multiple
decision thresholds indicate that the model is capable of
trading off between precision and recall depending on the
application requirements without hurting the overall evalua-
tion metric [6]. We observe that m-HyperLSTM outperforms
both HyperLSTM and LSTM for all the spectrum of decision
thresholds, while achieving fairly consistent F1-scores across
increasing decision thresholds.

A. Real-Time Inference

m-HyperLSTM is readily usable for real-time classification.
During real-time inference, the gaze locations are aggregated
into feature vectors at each second and a context of the
latest tw seconds are used as input for the network to predict
the current workload level. In our supplementary video, we
present the real-time classification of workload for the same
participants.

Real-Time classification of workload has many potential
applications. As a starting point, the predicted workload
could be used to manage non-critical user interaction within
intelligent vehicles, such as lowering music volumes or
diverting calls to voice mails to reduce workload of users [8].
As model performance continue to improve, the predicted
workload may be applied to more critical tasks such as
deriving the control policy for human-in-loop control, as
demonstrated in [9], [10].



TABLE I
CLASSIFICATION PERFORMANCE ON COGNITIVE WORKLOAD USING GAZE LOCATION SEQUENCE

5s 10s 20s
F1 Pr (%) Re (%) F1 Pr (%) Re (%) F1 Pr (%) Re (%)

SVM 0.52± 0.01 68.1± 0.5 42.1± 1.0 0.60± 0.01 69.5± 0.66 52.7± 0.7 0.69± 0.01 69.2± 1.2 67.8± 1.2
Log Reg 0.67± 0.005 51.9± 0.6 93.6± 2.1 0.69± 0.01 55.8± 1.9 88.9± 4.0 0.71± 0.01 60.3± 1.4 87.7± 1.6
LSTM 0.67± 0.01 54.6± 1.4 86.9± 3.3 0.76± 0.01 70.6± 2.1 82.4± 3.6 0.79± 0.03 74.0± 2.9 84.6± 4.4

HyperLSTM 0.70± 0.02 58.5± 3.2 88.9± 3.2 0.79± 0.04 73.8± 5.9 87.8± 1.6 0.77± 0.03 76.4± 7.9 78.2± 2.2
m-HyperLSTM 0.71± 0.01 62.4± 2.9 83.8± 5.8 0.86± 0.01 83.9± 5.1 87.9± 3.5 0.88± 0.03 90.1± 1.9 86.3± 6.6

VII. CONCLUSIONS

The ability to predict human cognitive states is an important
problem with many applications. In this work, we addressed
the problem of cognitive workload classification using a se-
quence of gaze locations with only consumer-grade hardware.
The proposed framework is task-agnostic and generic enough
for other temporal data such as EEG or ECG readings. The
proposed method is able to tackle data variability commonly
found in physiological signals and outperforms state-of-the-
art sequence models. For future work, an interesting direction
would be multi-sensory fusion, which may further improve
model performance and reliability.

ACKNOWLEDGMENT
The authors would like to thank Antoine Cully for useful

discussions on this work, and all the experiment participants.

REFERENCES

[1] Y. Demiris, “Prediction of intention in robotics and multiagent systems,”
Cognitive Processing, vol. 8, no. 3, pp. 151–158, 2007.

[2] M. K. H. Kretzschmar and C. S. W. Burgard, “Feature-based prediction
of trajectories for socially compliant navigation,” Robotics: Science
and Systems VIII, p. 193, 2013.

[3] H. S. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 1, pp. 14–29,
2016.

[4] J. Mainprice and D. Berenson, “Human-robot collaborative manipula-
tion planning using early prediction of human motion,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 299–306.

[5] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver
cognitive distraction using support vector machines,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 2, pp. 340–350, June
2007.

[6] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent
neural networks for driver activity anticipation via sensory-fusion archi-
tecture,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 3118–3125.

[7] M. Wollmer, C. Blaschke, T. Schindl, B. Schuller, B. Farber, S. Mayer,
and B. Trefflich, “Online driver distraction detection using long
short-term memory,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 2, pp. 574–582, 2011.

[8] J. A. Healey and R. W. Picard, “Detecting stress during real-world
driving tasks using physiological sensors,” IEEE Transactions on
Intelligent Transportation Systems, vol. 6, no. 2, pp. 156–166, June
2005.

[9] C. P. Lam, A. Y. Yang, K. Driggs-Campbell, R. Bajcsy, and S. S.
Sastry, “Improving human-in-the-loop decision making in multi-mode
driver assistance systems using hidden mode stochastic hybrid systems,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept 2015, pp. 5776–5783.

[10] K. Driggs-Campbell, V. Shia, and R. Bajcsy, “Improved driver modeling
for human-in-the-loop vehicular control,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), May 2015, pp. 1654–
1661.

[11] T. Carlson and Y. Demiris, “Collaborative control for a robotic
wheelchair: evaluation of performance, attention, and workload,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 42, no. 3, pp. 876–888, 2012.

[12] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” International
Conference on Learning Representations, 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] T. Fischer, H. J. Chang, and Y. Demiris, “Rt-gene: Real-time eye gaze
estimation in natural environments,” in Proceedings of the European
Conference on Computer Vision, 2018.

[15] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar,
W. Matusik, and A. Torralba, “Eye tracking for everyone,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[16] E. T. Solovey, M. Zec, E. A. Garcia Perez, B. Reimer, and B. Mehler,
“Classifying driver workload using physiological and driving per-
formance data: Two field studies,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14.
New York, NY, USA: ACM, 2014, pp. 4057–4066.

[17] T. Georgiou and Y. Demiris, “Adaptive user modelling in car racing
games using behavioural and physiological data,” User Modeling and
User-Adapted Interaction, vol. 27, no. 2, pp. 267–311, Jun 2017.

[18] E. Ferreira, D. Ferreira, S. Kim, P. Siirtola, J. Rning, J. F. Forlizzi,
and A. K. Dey, “Assessing real-time cognitive load based on psycho-
physiological measures for younger and older adults,” in 2014 IEEE
Symposium on Computational Intelligence, Cognitive Algorithms, Mind,
and Brain (CCMB), Dec 2014, pp. 39–48.

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[20] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Advances in Neural
Information Processing Systems, 2016, pp. 64–72.

[21] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2818–2826.

[23] D. Gopher and E. Donchin, “Workload-an examination of the concept,”
Handbook of Perception and Human Performance, Vol II, Cognitive
Processes and Performance. New York: Wiley & Sons, 1986.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference for Learning Representations, 2015.

[25] B. Mehler, B. Reimer, and J. A. Dusek, “Mit agelab delayed digit recall
task (n-back),” Cambridge, MA: Massachusetts Institute of Technology,
2011.

[26] B. Mehler, B. Reimer, and J. F. Coughlin, “Sensitivity of physiological
measures for detecting systematic variations in cognitive demand from
a working memory task: an on-road study across three age groups,”
Human factors, vol. 54, no. 3, pp. 396–412, 2012.

[27] B. Reimer, B. Mehler, Y. Wang, and J. F. Coughlin, “A field study
on the impact of variations in short-term memory demands on drivers
visual attention and driving performance across three age groups,”
Human Factors, vol. 54, no. 3, pp. 454–468, 2012.

[28] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in
clinical time series with rnns,” Machine Learning for Healthcare, 2016.


