88,178 research outputs found

    ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP MULTIPROCESSOR AND PHASE-CHANGE MEMORY

    Get PDF
    Over the last two decades, functions of the embedded systems have evolved from simple real-time control and monitoring to more complicated services. Embedded systems equipped with powerful chips can provide the performance that computationally demanding information processing applications need. However, due to the power issue, the easy way to gain increasing performance by scaling up chip frequencies is no longer feasible. Recently, low-power architecture designs have been the main trend in embedded system designs. In this dissertation, we present our approaches to attack the energy-related issues in embedded system designs, such as thermal issues in the 3D chip multiprocessor (CMP), the endurance issue in the phase-change memory(PCM), the battery issue in the embedded system designs, the impact of inaccurate information in embedded system, and the cloud computing to move the workload to remote cloud computing facilities. We propose a real-time constrained task scheduling method to reduce peak temperature on a 3D CMP, including an online 3D CMP temperature prediction model and a set of algorithm for scheduling tasks to different cores in order to minimize the peak temperature on chip. To address the challenging issues in applying PCM in embedded systems, we propose a PCM main memory optimization mechanism through the utilization of the scratch pad memory (SPM). Furthermore, we propose an MLC/SLC configuration optimization algorithm to enhance the efficiency of the hybrid DRAM + PCM memory. We also propose an energy-aware task scheduling algorithm for parallel computing in mobile systems powered by batteries. When scheduling tasks in embedded systems, we make the scheduling decisions based on information, such as estimated execution time of tasks. Therefore, we design an evaluation method for impacts of inaccurate information on the resource allocation in embedded systems. Finally, in order to move workload from embedded systems to remote cloud computing facility, we present a resource optimization mechanism in heterogeneous federated multi-cloud systems. And we also propose two online dynamic algorithms for resource allocation and task scheduling. We consider the resource contention in the task scheduling

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM
    • …
    corecore