4 research outputs found

    Security Configuration Management in Intrusion Detection and Prevention Systems

    Get PDF
    Intrusion Detection and/or Prevention Systems (IDPS) represent an important line of defense against a variety of attacks that can compromise the security and proper functioning of an enterprise information system. IDPSs can be network or host-based and can collaborate in order to provide better detection of malicious traffic. Although several IDPS systems have been proposed, their appropriate con figuration and control for e effective detection/ prevention of attacks and efficient resource consumption is still far from trivial. Another concern is related to the slowing down of system performance when maximum security is applied, hence the need to trade o between security enforcement levels and the performance and usability of an enterprise information system. In this dissertation, we present a security management framework for the configuration and control of the security enforcement mechanisms of an enterprise information system. The approach leverages the dynamic adaptation of security measures based on the assessment of system vulnerability and threat prediction, and provides several levels of attack containment. Furthermore, we study the impact of security enforcement levels on the performance and usability of an enterprise information system. In particular, we analyze the impact of an IDPS con figuration on the resulting security of the network, and on the network performance. We also analyze the performance of the IDPS for different con figurations and under different traffic characteristics. The analysis can then be used to predict the impact of a given security con figuration on the prediction of the impact on network performance

    Utilizing Graphics Processing Units for Network Anomaly Detection

    Get PDF
    This research explores the benefits of using commonly-available graphics processing units (GPUs) to perform classification of network traffic using supervised machine learning algorithms. Two full factorial experiments are conducted using a NVIDIA GeForce GTX 280 graphics card. The goal of the first experiment is to create a baseline for the relative performance of the CPU and GPU implementations of artificial neural network (ANN) and support vector machine (SVM) detection methods under varying loads. The goal of the second experiment is to determine the optimal ensemble configuration for classifying processed packet payloads using the GPU anomaly detector. The GPU ANN achieves speedups of 29x over the CPU ANN. The GPU SVM detection method shows training speedups of 85x over the CPU. The GPU ensemble classification system provides accuracies of 99% when classifying network payload traffic, while achieving speedups of 2-15x over the CPU configurations

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI
    corecore