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Abstract

Network intrusion detection signatures are often outdated as new attacks are

developed more quickly than signatures. Machine learning anomaly-based network

intrusion detection methods provide the ability to detect unknown attacks but require

significantly more processing time than signature detection methods. The availability of

Graphics Processing Units (GPUs) in many personal computers leads to a potential

solution for a scalable, cost-e↵ective network anomaly detection system. This research

explores the benefits of using commonly-available graphics processing units (GPUs) to

perform classification of network tra�c using supervised machine learning algorithms.

Two full factorial experiments are conducted using a NVIDIA GeForce GTX 280

graphics card. The goal of the first experiment is to create a baseline for the relative

performance of the CPU and GPU implementations of Artificial Neural Network (ANN)

and Support Vector Machine (SVM) detection methods under varying loads. The goal of

the second experiment is to determine the optimal ensemble configuration for classifying

processed packet payloads using the GPU anomaly detector. The configurations include

three base classifier configurations and two ensemble combination methods.

Experimental results show that the GPU implementation of the anomaly-based

network intrusion detection system provides significant training and testing speedups over

the CPU implementation for the Network Security Laboratory Knowledge Discovery and

Data mining (NSL-KDD) dataset as well superior scaling across the load sizes evaluated.

The GPU ANN achieves speedups of 29x over the CPU ANN. The GPU SVM detection

method shows training speedups of 85x over the CPU. The GPU ensemble classification

system provides accuracies of 99% when classifying network payload tra�c, while

achieving speedups of 2-15x over the CPU configurations. These results indicate the the

GPU anomaly detection system is a viable solution for providing an additional layer in the

defense of computer networks.
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Utilizing Graphics Processing Units for Network Anomaly Detection

1 Introduction

1.1 Motivation

Network Intrusion Detection Systems (NIDS) are a primary line of defense in

securing computer networks against malicious tra�c. Most NIDS today examine network

tra�c for known attacks using predefined signatures. These detectors sit at an ingress or

egress point to the network and scan all passing tra�c for matching patterns.

Unfortunately, the signature-based detection scheme is limited to detecting known attack

signatures. Newly developed attack vectors and zero-days are not detectable as the sensor

has no signatures for them. As a result, the ability to detect novel attacks is negligible until

new signatures are developed.

A second type of NIDS scheme known as anomaly-based detection creates a baseline

for normal tra�c and triggers on tra�c that falls outside the normal operation of the

network. This detection scheme has the potential to detect unknown intrusions or zero-day

attacks that signature-based detectors are unable to detect. A current research trend in the

field of anomaly-based intrusion detection uses machine learning algorithms. This

research focuses on supervised machine learning algorithms which use labeled training

datasets to create a generalization function that describes the relationship between the

input features and the tra�c classification. Two commonly used algorithms are neural

networks, which create a generalized regression model for a data set, and support vector

machines, which construct a maximum margin separator to split the data into classes. In

practice, these detection techniques require a great amount of processing time for large

datasets. However, with the advent of general purpose computing for GPU (GPGPU)
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programming standards, it is possible to perform these computations on the GPU’s highly

parallelized architecture, significantly reducing the required processing time.

1.2 Overview and Goals

This research focuses on the implementation and evaluation of a graphics processing

unit (GPU) accelerated network intrusion detection system (GNIDS) that uses the parallel

nature of the GPU to perform network anomaly detection using supervised machine

learning techniques. GNIDS is designed to support multiple machine learning classifiers

in an ensemble setup using two di↵erent ensemble combination methods, a majority vote

and a neural network classifier. The system is trained on a labeled training dataset and

used to predict labels for future tra�c. These predicted labels are written to a log for

future review.

This research has three goals. The first goal is to determine the more accurate

machine learning technique for classifying network tra�c on the GPU between artificial

neural networks (ANNs) and support vector machines (SVMs). To accomplish this goal,

GNIDS is implemented using two CUDA machine learning libraries, GTSVM and

LIBCUDANN [CSK11][Don11]. A GeForce GTX 280 is used to perform baseline

comparisons of the machine learning techniques on the Network Security Laboratory

Knowledge Discovery and Data mining (NSL-KDD) IDS evaluation dataset [TBL09b].

The second goal is to evaluate the performance di↵erences between executing GNIDS’s

detection algorithm on the CPU and GPU. To accomplish this goal, GNIDS is also

implemented using the LIBSVM CPU support vector machine library and the CPU ANN

functionality of LIBCUDANN [ChL11]. The relative execution times are collected and

compared for the NSL-KDD dataset and a dataset preprocessed using 2⌫-gram byte

frequency analysis. The third goal of this research is to determine which ensemble

configuration provides the highest accuracy when classifying payload data. To accomplish

this goal, the ensemble functionality of GNIDS is used to classify the 2⌫-gram frequency
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analysis dataset using the majority vote and final ANN classifier ensemble combination

methods with three di↵erent configurations of base classifiers for each machine learning

detection method. This research is unique in that it analyzes the performance of

supervised machine learning intrusion detection techniques on the GPU. It also explores

the feasibility of using supervised machine learning with the 2⌫-gram payload analysis

technique using ANN ensembles and SVM ensembles on the GPU.

The hypothesis of the first research goal is that support vector machines will be more

accurate at classifying anomalous network tra�c using the GPU than the artificial neural

networks. The second goal hypothesizes that the GPU implementation for the intrusion

detection system will be significantly faster than the CPU implementation. For goal three,

the hypothesis is that adding more base classifiers to the ensemble and using a final

classifier combination method instead of a simple majority vote will increase the accuracy

of the ensemble when classifying network payload data processed using the 2⌫-gram

technique from McPAD [PAF09].

1.3 Thesis Layout

This chapter presents the topic, explores the motivation, and summarizes the goals of

this research. Chapter 2 provides background information on network intrusion detection

systems (NIDS), machine learning, and general purpose computing on graphics

processing units (GPGPU) using NVIDIA graphics hardware. Chapter 3 presents the

methodology used to evaluate the performance of GNIDS. The results of the experiments

are presented and analyzed in Chapter 4. Lastly, Chapter 5 provides a summary of the

conclusions drawn and a discussion of areas for future work. The data collected in

Experiments 1 and 2 is included in Appendices B and D, respectively.
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2 Background and Related Work

This chapter provides the background and related work for network intrusion

detection using machine learning via general purpose computing on graphics processing

units (GPGPU). Sections 2.1.1-2.1.3 give a brief overview of the history of intrusion

detection and the various types of intrusion detection systems (IDS). Section 2.1.4

provides an overview of commonly used intrusion detection techniques. Section 2.2

presents an overview of machine learning. A description of the specific machine learning

techniques used in this research is provided in Section 2.3. Section 2.4 discusses related

research in the area of machine learning intrusion detection systems. Section 2.5 presents

the basics of GPGPU and the CUDA programming model. Section 2.6 discusses related

work with GPGPU machine learning and intrusion detection. Lastly, Section 2.7 describes

the specific machine learning implementations used in this research.

2.1 Intrusion Detection

2.1.1 Development of the Intrusion Detection System. The concept of intrusion

detection (ID) began in the 1980’s with James Anderson’s paper on computer security and

threat modeling. In his paper, Anderson noted that unauthorized accesses could be

detected through the use of audit files [And80]. In 1987, Dorothy Denning wrote a paper

that outlined a methodology for intrusion detection using patterns of abnormal system

usage. This paper is often credited with sparking the imagination of researchers in the

intrusion detection field, leading to the development of several intrusion detection

techniques. The premise for intrusion detection provided by Denning is that intrusions are

indicated by some abnormal use of the target system and should be detectable [Den87].

Intrusion detection techniques are distinguishable by the source of data they analyze

and the method with which they analyze it [Kum07]. The first distinction separates

intrusion detection systems into host-based, distributed, and network-based solutions.
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Host-based detectors focus on system event logs and system calls. Distributed detectors

collect audit information from several systems and their interconnecting network [NiJ03].

Network-based detectors focus on analyzing the contents of network packets directly for

matching tra�c [Kum07]. These intrusion detection systems are split by their detection

method into two types, misuse detection systems and anomaly detection systems.

2.1.2 Misuse Detection. Misuse detection, often called signature-based detection

or rule-based detection, operates by comparing network tra�c to known signatures and

patterns [Kum07]. Examples of common signatures are specific system commands used in

an attack, specific request strings used by malware, or specific status codes or requests

found in protocol headers and responses [ScM07]. The primary drawback of misuse

detection is the dependency on known attack and misuse patterns. Before the IDS can

detect new attacks, its signatures must be updated for the patterns of the new attacks.

Signature-based detectors use a variety of techniques. A commonly used technique is

the Aho-Corasick algorithm [Kum07]. This algorithm is popular because it allows for

string matching in linear time relative to the input. It operates by constructing a finite

automaton from the signatures and allows them to be searched in multiple stages. A

second popular technique is regular expression signatures. Regular expressions are

popular due their added flexibility as compared to fixed string signatures. Since this

research is primarily focused on anomaly-based detection, signature detection techniques

are not discussed in detail.

2.1.3 Anomaly Detection. Anomaly detection consists of two stages, a training

stage, in which the baseline of normal behavior is established, and an analysis stage, in

which the tra�c is compared to the baseline or profile [PaP07]. If tra�c deviates

significantly from the system’s normal profile, it is classified as an attack. Since anomaly

detectors are not based on known attacks but on the comparison of normal and anomalous
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behavior, they have the potential to detect previously unknown attacks [Kum07]. Like

misuse detectors, anomaly detectors have well-known drawbacks. First, it is possible to

create a baseline that contains unidentified attacks, resulting in their classification as

normal behavior [NiJ03]. Also, it can be di�cult to draw a clear distinction between

normal and anomalous behavior, resulting in a larger number of false positive alerts when

compared to a misuse detector [PaP07]. Regardless of these drawbacks, anomaly-based

detectors have the potential to increase the overall security of computer networks as future

attacks are developed more quickly than new signatures. This is the primary motivation

for this research which explores the use of GPGPU anomaly-based detectors as a method

of adding additional layers of computer network defense.

2.1.4 Common IDS Techniques. There are numerous techniques used for

anomaly-based intrusion detection. This section provides an overview of some commonly

used techniques. The first technique is statistical anomaly detection. This technique

examines the statistical properties of the tra�c such as the mean, variance, and limits to

classify tra�c data. By collecting metrics such as the number of distinct IP addresses,

CPU load, connection rate, and login attempts, the detector builds a statistical model for

the normal behavior of the system [GDM09]. As the system runs, the detector collects a

current tra�c profile and compares its stochastic properties to the original baseline profile,

generating alerts when significant di↵erences are detected. Haystack, IDES, and SPADE

are some examples of IDS that use statistical detection methods [PaP07].

Data mining is a second technique commonly used for anomaly detection. Data

mining algorithms, such as fuzzy logic, are used to determine patterns from the training

data and create baselines for the system. The Fuzzy Intrusion Recognition Engine (FIRE)

uses fuzzy logic to create a set of fuzzy rules that define attacks against the network based

on observed patterns in the input features [PaP07]. Genetic algorithms are another data

mining technique that is commonly used. These algorithms are based on probabilistic
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rules and evolve to converge on a general solution from several directions

[Kum07][RuN09]. They are often used to derive classification rules and to optimize

parameters used in other detection algorithms [GDM09].

Clustering is another data mining method used for anomaly detection. Clustering

techniques group tra�c data into clusters based on a distance metric [GDM09]. Some

clustering based techniques train the system using unlabeled data, meaning that the system

is not told which tra�c is normal or anomalous. The assumption is made that the

proportion of anomalous tra�c is smaller. Tra�c belonging to the smaller clusters is

considered anomalous by the system. Other methods perform clustering on normal data

only and create a profile. New tra�c is then evaluated to see if it fits into the normal

cluster profile [PaP07].

Many anomaly detection solutions use machine learning algorithms. Commonly used

techniques include artificial neural networks, Bayesian networks, Markov models, and

support vector machines. Support vector machines and artificial neural networks are the

primary focus of this research and are discussed in Sections 2.3.1 and 2.3.3.

2.2 Machine Learning

The study of machine learning is the attempt to create a machine agent that can

”improve its performance on future tasks after making observations about the world”

[RuN09]. In most machine learning approaches, agents learn by analyzing a set of training

data and generalizing the input-output relationships of the training set. This generalization

is used to predict outcomes based on future input or classify examples with a predicted

label.

2.2.1 Learning Types. There are three main categories of learning techniques,

distinguished by their feedback approaches [RuN09]. The first of these types is

unsupervised learning. In this approach, the agent is presented with unlabeled data. The
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agent must make its own determinations as to the relationships of the data presented to it.

The second type of learning is reinforcement learning. In this approach, the agent receives

positive or negative feedback when it correctly, or incorrectly, reaches a conclusion. The

agent determines which step in the process resulted in the punishment and attempts to

correct its reasoning [RuN09]. The last formal category is supervised learning.

Supervised learning is similar to reinforcement learning in that the agent is given feedback

on input-output pairs. However, in supervised learning, the agent is presented with a

pre-labeled training set that it uses to form its generalizations [RuN09].

2.2.2 Supervised Learning. The machine learning algorithms used in this research

utilize supervised learning as their feedback method. Supervised learning can be

described mathematically as:

Given a training set of N example input-output pairs

(x1, y1), (x2, y2), . . . , (xN , yN), where each y j is generated by an unknown

function y = f (x), discover a function h that approximates the true function

f (x) [RuN09].

The approximating function h is called the hypothesis. The goal of a well-generalizing

hypothesis is to successfully predict the output for future inputs that were not included in

the training set without overfitting. Overfitting occurs when a hypothesis function fits the

training data but is not useful for predicting the general case from novel data.

2.2.3 Cross-Validation. K-fold cross-validation is a technique commonly used to

evaluate the performance of a machine learning hypothesis on predicting future values

from novel data. This technique breaks the training data into k subsets or folds. The

learning algorithm is trained on each of the subsets until only one subset remains, 1
k th of

the data. This last set is used as a validation set to determine the error rate of the learning

algorithm’s hypothesis. The process is repeated k times with each of the k folds serving as
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a test set for a round. The average error rate for the folds is used to evaluate how well a

hypothesis predicted the output for the entire dataset [RuN09].

2.3 Selected Machine Learning Techniques

2.3.1 Support Vector Machines. Support Vector Machines (SVMs) are a machine

learning technique that is a primary focus area for this research. SVMs operate by

constructing a ”maximum margin separator”, a generalization function that separates

example points into distinct regions as illustrated in Figure 2.1 [Fle09][RuN09]. In this

figure, the data belongs to one of two classes, a black dot or white dot. The solid black

line is the support vector that separates the data points into distinct groups and the

distances from it to the dotted lines are the margins (d1 and d2). The goal of creating a

support vector machine is to determine the support vector that separates the classes with

the greatest margin between the groups.

0,0

d2
d1

H2

H1

w

-b / |w|

Class 1
Class 2

Figure 2.1: Support Vector Example

SVMs have a few key properties that provide advantages over similar types of

machine learning. First, SVMs have the ability to map their data into a higher-dimensional
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space, allowing non-linearly separable data to be separated in the higher dimensions. This

technique is known as the kernel trick and is a result of using a non-linear function as the

kernel function for the SVM. The second advantageous property of support vector

machines is the way the training state is stored. SVMs are non-parametric with respect to

training; all of the training samples are retained in the generalization model. However,

support vector machines have the advantage over other non-parametric models in that they

optimize on the more important training examples, allowing the number of retained

support vectors, or margin separators, to be reduced. This results in a combination of

non-parametric and parametric models, allowing SVMs to be resistant to overfitting

[RuN09].

2.3.2 Theoretical Basis for SVM. As mentioned in the previous section, SVMs use

maximal margin separators, also called hyperplanes, to separate the training data into

classes. These separators can be described by xi · w + b = 0, where w is the normal to the

hyperplane, xi is a given training instance, and b is the perpendicular distance from the

hyperplane to the origin as shown in Figure 2.1. Constructing SVMs comes down to

selecting parameters w and b so that the training data is separated and described by the

following equations [Fle09]:

xi · w + b � +1, yi = +1 (2.1)

xi · w + b  �1, yi = �1 (2.2)

and the combined form:

yi(xi · w + b) � 1 � 08i (2.3)

where yi is the class label for a given training instance. (2.1) is the boundary for the

positive class and (2.2) is for the negative class. SVM implementations use quadratic

programming optimization to search the space of w and b for a solution that correctly
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separates the examples with the maximum margin. A full derivation of the equations is

beyond the scope of this section and can be found in Fletcher’s SVM tutorial [Fle09].

After the optimal separators have been computed, the equation for the separator

(support vector) is given by [RuN09]:

h(x) = sign

0
BBBBBB@
X

j

a jy j(x · x j) � b

1
CCCCCCA (2.4)

where sign() returns the sign of the classification. A key property of the final equation is

that the data is represented by the dot products of pairs of points. This allows the kernel

trick mentioned in Section 2.3.1 to be used to evaluate the dot products in a corresponding

non-linear feature space without evaluating the full features of each data point [RuN09].

Additionally, a regularization, or cost, parameter is often added to the above equations,

allowing a penalty to be assigned to misclassified points in the event that the data is not

fully separable [Fle09]. This research uses a regularization parameter and a non-linear

kernel. The non-linear kernel function used in this research is the Gaussian radial basis

function. It is given by e��⇤|x�xj|2 which replaces the dot product (x · x j) in the linear kernel

given in (2.4) [ChL11]. The Gaussian kernel has one parameter, gamma (�), which

determines the flexibility of the final margin separator [HuW10].

2.3.3 Artificial Neural Networks. The second machine learning techniques used in

this research is artificial neural networks. Artificial Neural Networks (ANNs) are a type of

machine learning that utilize a collection of nodes, called neurons, to predict a result based

on a set of inputs. A neuron in an ANN is made up of an input function, an activation

function, and an output. These neurons are linked together with various weights assigned

to the links. Figure 2.2 illustrates a simple neuron [RuN09].
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Figure 2.2: An Artificial Neuron

Artificial neural networks contain numerous neurons connected with weighted links.

Each neuron computes a weighted sum of its input links using

in j =
Xn

i=0
wi jai (2.5)

and applies an activation function to derive its output as follows.

aj = g(in j) = g
✓Xn

i=0
wi jai

◆
(2.6)

The activation function is usually a hard threshold or a logistic function. Using non-linear

functions allows the network to describe non-linear relationships between the inputs and

outputs [RuN09]. A commonly used activation function is the sigmoid function. This

function is given by [Nis12a]:

y =
1

1 + e�2x (2.7)

A second commonly used function is the symmetric sigmoid or hyperbolic tangent

function given by [Nis12a]:

y = tanh(x) =
2

1 + e�2x � 1 (2.8)

This research uses both the sigmoid function and the hyperbolic tangent function for the

activation functions of the neurons.
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2.3.4 Feed-Forward Neural Network. This research uses a type of neural network

known as a feed-forward neural network. Feed-forward neural networks consist of layers

of neurons that feed their outputs forward as the inputs to the next layer of neurons. The

neural networks used in this research consist of three layers, an input layer, a layer of

hidden neurons, and an output layer as illustrated in Figure 2.3 [RuN09].

3

4 6

5

2

1
W1,3

W1,4

W2,3

W2,4 W4,6

W3,5

W4,5

W3,6

Figure 2.3: Example Multilayer ANN

The input layer, nodes 1 and 2, represents the inputs from the dataset to the network.

This layer is connected by weighted links to the hidden neuron layer, neurons 3 and 4.

Each neuron in the hidden layer performs the input aggregation and logistic activation

described in (2.6). The outputs from the hidden layer neurons then feed forward as inputs

to the output layer neurons, neurons 5 and 6. The output layer also computes an activation

function to determine the outputs of each output neuron.

For inputs x = (x1, x2), the output of neuron 5 in the example network depicted in

Figure 2.3 is given by expanding (2.6) into

a5 = g(w0,5+w3,5a3+w4,5a4) = g(w0,5+w3,5g(w0,3+w1,3x1+w2,3x2)+w4,5g(w0,4+w1,4x1+w2,4x2))

(2.9)
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where g(x) is the activation function of the given neuron and the w0,x weights are the bias

inputs with a value of 1 [RuN09]. This research uses the sigmoid function (2.7) as the

activation function for the hidden layer neurons and the hyperbolic tangent function (2.8)

as the activation function for the output layer neurons.

2.3.5 Training Feed-Forward Neural Networks. Feed-forward neural networks

contain all of their hypothesis information in the weights assigned to the individual links

between the neurons. In order to generalize a learning problem, the weights of the

network must be selected that best describe the relationships between the input features

and the output label. This research uses a training technique called back-propagation.

Back-propagation consists of two-phases. The first phase is the computation of the output

error and the second phase is the updating of the weights in the network to minimize that

error for the given training set. The incremental version of the back-propagation algorithm

is simplified as follows [RuN09]:

1. For the given training example, calculate the activation function outputs feeding

forward to the last layer.

2. Back-Propagate the deltas to the input layer.

a. For each output neuron j, calculate the delta given by �[ j] = g0(in j) ⇥ (y j � aj),

where the vector y is the desired output.

b. For each non-output layer

i. For each neuron i in layer l, calculate the delta given by

�[i] = g0(ini)
P

j wi, j�[ j].

c. Update the weights wi, j such that wi, j  wi, j + a ⇥ ai ⇥ �[ j].
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3. Steps 1 and 2 are repeated until a stopping condition (such as target mean square

error for the predicted outputs) is met or the target number of epochs (iterations) is

reached.

This research utilizes a slightly di↵erent technique called batch back-propagation. The

primary di↵erence is incremental training updates the weights after each training example

for every epoch, or repetition of the algorithm, while batch training computes the deltas

for all of the examples before updating any of the weights, resulting in only one update

per epoch. This results in slower training for some problems, but can be more accurate

due to the more accurate calculation of the mean square error [Nis12b].

2.3.6 Ensembles. Machine learning techniques such as artificial neural networks

and support vector machines may also be used in combination. Ensemble learning is a

technique that combines multiple learning algorithm hypotheses. The principle behind

ensembles is to reduce the overall chance of error by combining all of the independent

hypotheses into one. Some techniques, such as boosting, involve adjusting the training

data based on intermediate predictions, while others utilize a combination method such as

a majority vote, sum, or product of the outputs.

Several common techniques used to combine classifiers are categorized as

winner-take-all approaches. These include majority voting and weighted majority vote.

Consider a system that has five hypotheses. In order for a misclassification to occur, three

or more of its hypotheses have to agree on the incorrect answer [RuN09]. This is an

example of a majority vote system. A weighted majority vote is similar to majority vote

but the base classifiers each receive a weight to influence their input in the final voting.

Additional techniques include naive-Bayes combination, sum averages, and neural

network combination [CYT06].

This research focuses on the majority voting and neural network methods for

combining classifier outputs. The neural network combination method takes the outputs of
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the base classifiers as inputs and trains a classifier hypothesis function to best combine the

outputs into a final prediction. This allows the weights of the base classifiers to be

automatically adjusted unlike the weighted majority vote and weighted sum techniques

which use a fixed set of weights for the base classifiers [CYT06].

2.4 Related Machine Learning IDS Work

Extensive work covering the use of various types and combinations of ANNs and

SVMs in intrusion detection has been published. Silva et al. utilize hamming nets, a type

of neural network, to classify network tra�c payloads using signatures obtained from

Snort, resulting in a 70% classification of illegitimate tra�c [DFD04]. Zhang et al.

present a framework which employs a statistical modeling technique to create profiles for

network tra�c and compare the performance of five types of neural networks on

classifying tra�c according to the generated profiles [ZLM01]. Golovko et al. use a

combination of neural networks and principle component analysis techniques. These

neural networks are used to perform feature reduction and classification in both a

stand-alone configuration and an ensemble setup, observing accuracies of 93% [GVK07].

Mukkamala and Sung compare the relative performance of support vector machines

and several types of artificial neural networks on the classification of preprocessed

network tra�c, achieving accuracies of 99% for SVMs and 97% for ANNs [MuS03].

John Mill conducts a comparison of several SVM techniques and their performance when

classifying network tra�c and presents a technique called ArraySVM which is similar to

an ensemble of SVM. The SVM with the greatest margin, or confidence, when classifying

a novel point is used to make the overall prediction, reaching accuracies of 91% for his

evaluation set [MiI04]. Safaa Zaman takes an ensemble-like distributed approach to

classifying network tra�c. Multiple classifiers (SVM and ANN) are used with di↵erent

input features targeted to specific layers of the Internet Protocol stack to detect specific

types of tra�c and attacks, achieving accuracies of 99% for his evaluation data [ZaK09].

16



These research e↵orts show that ANN and SVM techniques can be successfully applied to

the classification of network tra�c.

2.5 Graphics Processing Units

This section discusses the other focus area of this research, general purpose

computing on graphics processing units (GPGPU). Section 2.5.1 provides an overview of

modern graphics hardware. Section 2.5.2 introduces the NVIDIA GPGPU standard,

compute unified device architecture (CUDA). The CUDA model is discussed in Section

2.5.3. Section 2.5.4 explains the CUDA compilation process and Section 2.5.5 covers the

primary di↵erences between generations of CUDA hardware.

2.5.1 Graphical Processing Units. Modern graphics hardware consists of one or

more graphical processing units (GPU), onboard memory, and a PCI-express interface.

With all of these dedicated components, graphics cards are e↵ectively their own complete

computing contexts. The key di↵erence between central processing units (CPU) and

GPUs is the nature of the computations that they handle. CPUs, like the Intel Core i7

series, are optimized for sequential operations, branch prediction, and quick cache

operations, while GPUs are optimized for handling large amounts of streaming data and

similar operations in parallel. The parallelism is possible because graphics processors

have more transistors devoted to ”data processing rather than data caching and flow

control” than traditional CPUs as illustrated in Figure 2.4 [NVI11b].

GPUs require this level of parallelism to accomplish their primary task, graphics

rendering, which is a process with a higher arithmetic intensity than standard computing

tasks [NVI11b]. Arithmetic intensity is the ratio of arithmetic operations to memory

operations. Graphics rendering falls into the category of high arithmetic intensity because

large numbers of repetitive mathematical operations are required to transform textures and

matrix representations of objects into forms that are viewable on a two-dimensional
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Figure 2.4: CPU Control versus GPU Control

display. These tasks are approached with data parallel processing which maps data

elements to parallel threads which execute the same program for each element, hiding the

memory access latency with calculations across multiple threads rather than with a cache

as on a CPU [NVI11b].

2.5.2 General Purpose Computing on GPU. In 2006, NVIDIA, a leading graphics

card manufacturer, released a new architecture designed to leverage the parallel nature of

the GPU for general purpose programming. This architecture is referred to as compute

unified device architecture (CUDA). CUDA GPUs implement an architecture type

described by NVIDIA as a single instruction, multiple thread (SIMT) architecture. SIMT

is similar to single instruction, multiple data (SIMD) in that it controls multiple processing

elements with a single instruction. However, while the SIMD vector exposes the SIMD

width to the software, the CUDA platform instructions specify the execution and

branching behavior of a single thread [NVI11b]. This type of architecture allows CUDA

programmers to focus on solving the programming problem at the thread-level using

parallel code across scalar independent threads or coordinated threads where these threads
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may operate on di↵erent data [NVI11b]. These segments of parallel code are called

CUDA kernels.

2.5.3 CUDA Model. The CUDA hardware architecture consists of a scalable array

of streaming multiprocessors (SMs). The multiprocessors are responsible for creating,

managing, scheduling, and executing groups of threads. CUDA organizes its threads into

three basic layers: the thread, the thread block, and the grid of thread blocks. The CUDA

thread hierarchy is depicted in Figure 2.5.

Figure 2.5: CUDA Thread Hierarchy

The CUDA thread is the lowest level of the thread hierarchy. These are lightweight

threads with little overhead, unlike general purpose threads on a CPU which have higher

context switching penalties [NVI12a]. Threads are organized into groups of 32 known as

warps. All threads in a warp follow the same execution path, executing the same

instruction in parallel with their respective data. For example, consider the pseudo-code
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kernel snippet in Figure 2.6. If only twenty threads in a warp meet the condition for the if

block, twelve threads will be paused awaiting the execution of the if case by the first

twenty threads. Next, the twenty threads will pause while the remaining twelve execute

the else case. Finally, when all of the separate paths converge, all the threads can execute

in parallel once again. It should be noted that this branch divergence cost occurs only

within a warp; separate warps always execute independently. Maximum e�ciency is

reached when all threads in a warp agree on a common execution path [NVI11b].

If(thread level condition)
{

Do work1;

}
Else
{

Do work2;
}

Do work3;

Figure 2.6: Branching Example

As shown in Figure 2.5, CUDA threads are organized into equally-sized blocks.

These thread blocks must be able to be executed in arbitrary order, in parallel, or in series.

As a result of this independent execution requirement, the CUDA kernels can be easily

distributed across multiple multiprocessors and block level branching does not incur the

cost of lower-level branching. Figure 2.7 illustrates the way that these blocks can be

distributed across GPUs with di↵ering numbers of cores [NVI11b]. Each GPU core is

assigned a group of blocks to execute. GPUs with fewer cores will execute kernels more

slowly as the thread blocks must wait for an available core.
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Figure 2.7: CUDA Thread Block Scaling

Thread blocks are assigned to a grid, the highest level in the thread hierarchy. When a

CUDA kernel is executed, it is assigned a grid of thread blocks which are assigned to the

available SMs and partitioned for execution into warps [NVI11b]. CUDA programs

execute in a heterogeneous environment; a portion executes serially on the CPU, while the

parallel kernels are assigned grids of thread blocks and executed on the CUDA device as

shown in Figure 2.8.
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Figure 2.8: CUDA Kernel Execution

Like the threading model, CUDA memory is also broken into layers with each layer

accessible by certain layers in the thread hierarchy as shown in Figure 2.9. Each thread

has access to its own registers and its own private local memory. Blocks have access to
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shared memory accessible by all the threads in the block. Global memory is accessible by

all threads and the host CPU [NVI11b]. Additionally, all threads have access to texture

and constant memory which are read-only and optimized for specific usages. The global,

constant, and texture memories are persistent across multiple kernels for the same

application. Additionally, the host (CPU) and device (GPU) memory spaces are separate;

copies to and from each context must be made explicitly by the programmer as kernels

can only operate on data that has been allocated in device memory. A more detailed

description of each type of memory is available in Section 5 of the NVIDIA CUDA C

Programming Guide [NVI11b]. Table 2.1 provides a summary of the di↵erent memory

types [NVI12a] .
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Registers

Shared Memory
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Registers

Thread

Local 

Memory

Registers
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Thread

Local 
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Thread Block(0,0) Thread Block(1,0)

Figure 2.9: CUDA Memory Hierarchy
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Table 2.1: CUDA Memory Types

Memory Location On/O↵ Chip Access Scope Lifetime

Register On R/W 1 thread Thread

Local O↵ R/W 1 thread Thread

Shared On R/W All threads in block Block

Global O↵ R/W All threads in block Host allocation

Constant O↵ R All threads + host Host allocation

Texture O↵ R All threads + host Host allocation

Since CUDA does not cache global memory accesses for all of its hardware versions

(compute capabilities), it is important for applications to coalesce reads and writes to

memory so as to maximize throughput. Coalescing is the practice of minimizing the total

number of transactions made to memory by the warp or half-warp. The techniques used to

minimize this di↵er depending on the compute capability of the CUDA device as later

generation devices perform some caching of global and local memory accesses. Section 5

of the NVIDIA CUDA C Programming Guide and Section 6 of the NVIDIA CUDA C

Best Practices Guide provide more details [NVI11b][NVI12a].

2.5.4 CUDA Compilation. NVIDIA provides a compiler called NVCC with its

CUDA software development kit. As mentioned in Section 2.5.3, CUDA applications are

heterogeneous in nature; a portion is compiled for the CPU, and a portion is compiled for

the GPU. A standard C/C++ compiler is used to compile the host code, while NVCC

compiles the CUDA kernels into assembly files as shown in Figure 2.10 [NVI11b]. The

instruction set architecture used by CUDA GPUs is called PTX. It spans multiple GPU

generations, allowing for backwards compatibility when run on newer chipsets [NVI11a].

This is accomplished by utilizing just-in-time compilation for the specific chipset. The

slowdown of the JIT compilation is partially o↵set by a cache of compiled PTX created
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and managed by the CUDA driver so that future instantiations do not perform redundant

compilation. NVCC also produces binary files called cubin files. The advantage of PTX

over cubin is the increased cross compatibility between generations of CUDA GPUs;

cubin files are compiled for a specific compute capability and will not execute on cards

with a di↵erent capability version.

C/C++
Compiler and Linker

C/C++ Program
With CUDA

Code

NVCC 
Compiler

CPU Binary GPU Binary

Figure 2.10: CUDA Application Compilation and Linking

2.5.5 CUDA Compute Capability. The device compute capability is a standard

used by NVIDIA to indicate which generation a GPU belongs to and its corresponding

features. A summary of the features available to di↵erent compute capabilities is provided

in the NVIDIA CUDA C Programming Guide [NVI11b]. The primary di↵erences in

compute capabilities are the allowable dimensions of threads blocks/grids, the number of

warps per multiprocessor, and the allowable sizes of various memory spaces. Compute

capability 1.3 and higher adds support for double-precision floating point operations,

while previous versions only support single-precision floating point operations.
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2.6 Related GPGPU Work

This section discusses related GPGPU work with respect to computer and network

security and intrusion detection.

The parallel nature of GPGPU is also beneficial to computer and network security

applications. GPGPU has shown particular promise in the area of string matching and

hash calculation. Kouzinopoulos and Margaritis utilize the GPU to perform string

matching using parallel implementations of several commonly used algorithms. They

observe a speedup of 24x over the serial CPU implementations [KoM09]. Collange et al.

employ the GPU to conduct digital forensics in the area of data carving. The GPU is used

to hash byte patterns and search a hash database in GPU memory, realizing a 13x speedup

over the CPU [CDD09]. Vasiliadis et at. explore o✏oading the matching of patterns for

network intrusion signatures to the GPU. Their research e↵ort focuses on improving the

performance of signature-based IDS, observing a 2-fold speedup over Snort

[Sou10][VAP08]. Smith et al. implement a signature pattern matching system using

deterministic finite automata and extended finite automata resulting in a speedup of 9x

over the CPU implementation [SGO09]. Kovach utilizes CUDA to accelerate the

computation of MD5 hashes for detecting malicious files, a technique commonly used in

antivirus products such as clamAV, observing speedups of 82% over the CPU

implementation [Cla09][Kov10]. Fechner performs similar research using the SHA-1

hashing algorithm [Fec10].

The highly repetitive and computationally expensive nature of many machine

learning and data mining techniques lend themselves particularly well to GPGPU

implementations. For example, the local outlier factor clustering algorithm is shown by

Alshawbkeh et al. to benefit from CUDA parallel execution with a speedup of over 100x

as compared to the CPU implementation [AJK10]. Platos et al. demonstrate the potential

of the parallel nature of the GPU with a CUDA implementation of a non-negative matrix
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factorization-based IDS. They realize maximum speedups of 500x for the training phase

and 190x for the testing phase [PKS10]. Zhang et al. use CUDA to perform a feature

reduction clustering procedure as a preprocessing step to a CPU support vector machine

intrusion detection system. This approach shows an increase in performance of the

reduction step of 32x; however, the SVM is still executed on the CPU, reducing the

overall gain to 8.28x [ZZW11]. These research e↵orts illustrate the potential of GPGPU to

improve the performance of intrusion detection systems that utilize machine learning for

anomaly detection.

2.7 Machine Learning Implementations

This section describes the specific machine learning implementations selected for this

research. Section 2.7.1 covers the CPU support vector machine implementation LIBSVM.

Section 2.7.2 provides an overview of GTSVM, the GPGPU support vector machine

implementation. Section 2.7.3 summarizes the artificial neural network implementation,

LIBCUDANN.

2.7.1 LIBSVM. The CPU support vector machine implementation used in this

research is LIBSVM Version 3.11. LIBSVM is a C++ library that provides support for

multiple types of SVM and kernel functions [ChL11]. LIBSVM employs a sequential

minimal optimization (SMO) algorithm to conduct the search for the optimal separators of

the training data. Chang and Lin present the basic problem as follows for a generalized

form of the support vector classification equations [ChL11]:

min
a

f (↵) ⌘ 1
2
↵T Q↵ + pT↵ (2.10)

such that

yT↵ = �, 0  ↵t  C, t = 1, . . . , l,
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and

yt = ±1, t = 1, . . . , l.

where Q is an l by l semi-definite matrix with Qi j ⌘ y jykK(xj · xk) and K(xj · xk),

abbreviated Kjk, is the kernel function. LIBSVM utilizes a sub-problem optimization

method wherein a working set of two elements is used to solve a sub-problem until a

stopping point is reached for the algorithm as described in the LIBSVM implementation

document [ChL11]. The working set selection process employs a second-order selection

heuristic described by Fan et al [FCL05].

2.7.2 GTSVM. The GTSVM library is a support vector machine library developed

by the Toyota Technological Institute at Chicago [CSK11]. It provides support for

Gaussian, polynomial, and sigmoid kernel support vector machines executed on the GPU

using CUDA GPGPU. It uses a SMO-type algorithm similar to that used in LIBSVM. The

simplified process is as follows [CSK11]:

1. Choose a working set on the GPU

2. Calculate the Gram matrix restricted to the working set using the CPU and optimize

the sub-problem.

3. Update all of the elements in response to the changes using the GPU.

GTSVM uses a working set of 16 elements rather than 2 as in LIBSVM in order to take

advantage of the parallel nature of the GPU and minimize the memory accesses needed.

Additionally, GTSVM uses a first-order working set selection heuristic, while LIBSVM

uses a second-order selection heuristic. The di↵erences between first-order and

second-order working set selection heuristics are described by Fan et al [FCL05].

GTSVM attempts to solve:

max
↵2<

1T↵ � 1
2
↵T Q↵ (2.11)
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subject to: 8i(0  ↵i  C) and
nP

i=1
yi↵i = 0 with ci ⌘

Pn
j=1 ↵ jy jK(xi, x j) as the responses or

support vectors. The working set contains 8 elements maximizing the selection heuristic

and 8 elements minimizing it [CSK11].

The calculation of the heuristic values is distributed across the GPU’s threads and a

parallel max-reduction is performed to locate the maxima. This involves breaking up the

list of heuristic values and sorting the chunks in parallel. The maximum values from each

chunk are added to a new list and the process is repeated. According to Cotter, this

reduction step is one of the most expensive portions of the GPU optimization algorithm.

When the results have been reduced to the point that using the GPU is no longer

cost-e↵ective due to the small number of values, the CPU is used to find the maxima

among the remaining heuristic values. The working set values are then copied to the CPU

and the sub-problem is optimized.

After the optimization step, the changes to the variables must be updated in the

support vectors. GTSVM performs a clustering of the training vectors by sparsity pattern

to allow the memory accesses on the GPU to be coalesced for the working set. The

sparsity pattern refers to the presence of zeros in the input data. An example of the

clustering is presented in Figure 2.11 [CSK11]. The non-zero values are grouped and

processed together by the thread blocks so that the zero values can be ignored, saving

execution time and memory accesses. The clustering algorithm operates on the

assumption that similar sparsity patterns occur frequently, allowing thread blocks to work

on the same cluster pattern for all of the data.
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Figure 2.11: GTSVM Clustering Example

2.7.3 LIBCUDANN. This research utilizes LIBCUDANN, a library written by

Luca Donati at the University of Parma [Don11]. LIBCUDANN is a C++ implementation

of a feed-forward neural network with back-propagation learning. It provides both a CPU

implementation and a CUDA GPU implementation. The implementation provides three

commonly used activation functions: linear, sigmoid, and hyperbolic tangent. The training

is performed either incrementally or in a batch and follows the back-propagation

algorithm described in Section 2.3.5.

The parallel implementation utilizes the GPU to perform the activation function and

neuron delta calculations for multiple neurons at once. It does this by using the following

method:

1. Calculate the neuron outputs for the training instances.

a. Using CUBLAS (a CUDA linear algebra library) operations, the neuron input

values are aggregated and multiplied [NVI12b].

b. The resulting values are passed to the CUDA activation function kernels to

calculate the activation function results for multiple neurons in parallel.
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2. The deltas are computed in a similar manner using the resulting neuron outputs and

CUDA error function kernels.

3. The network weights are updated by multiplying the neuron values matrix and

deltas matrix then adding the result to the previous weights matrix using CUBLAS

functions.

Since matrix multiplication and adding is an operation that can be split up into parallel

subproblems, it a↵ords a large speedup over a sequential CPU implementation.

2.8 Summary

This chapter provides the background on network intrusion detection using machine

learning via CUDA GPGPU. An overview of the history of intrusion detection is given

and various intrusion detection techniques are discussed. An overview of machine

learning is presented and the underlying theory for support vector machines and artificial

neural networks is explored. The NVIDIA CUDA GPGPU programming model and

hardware architecture are explored and related work regarding computer security and

GPGPU is discussed. Lastly, an overview is given of the specific machine learning

implementations selected for this research.
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3 Methodology

This chapter presents the goals and methodology of this research. Section 3.1 defines

the research goals and approach. Section 3.2 describes the system under test and the scope

of the research. Section 3.3 discusses the services provided by the system under test. The

workloads o↵ered to the system are discussed in Section 3.4. The metrics used to evaluate

the performance of the system are covered in Section 3.5. Section 3.6 describes the

system parameters. The factors and levels for the evaluation of the system are discussed in

Section 3.7. Section 3.8 describes the evaluation techniques used in this research. The

design of the experiments used to evaluate the system under test is presented in Section

3.9. Lastly, a summary of the methodology is provided in Section 3.10.

3.1 Problem Definition

The goals of this research are to:

1. Determine whether using Support Vector Machines (SVMs) or Artificial Neural

Networks (ANNs) is the more accurate method for classifying anomalous network

tra�c on the GPU. This research is limited to the use of Gaussian kernel SVMs and

feed-forward, single hidden layer ANNs with batch back-propagation learning and

the NVIDIA CUDA GPGPU standard.

2. Evaluate the performance di↵erences between a serial implementation and a parallel

implementation of the machine learning intrusion detection system under

consideration.

3. Determine which ensemble configuration provides the most accurate method for

classifying network payload data using support vector machine and artificial neural

network supervised machine learning classifiers. This research is limited to the

majority vote and final ANN classifier ensemble combination methods.
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The approach used to accomplish these goals is to:

1. Implement a GPU-accelerated, anomaly-based NIDS using the CUDA GPGPU

standard to perform the SVM and ANN machine learning. The GTSVM library is

used for the GPU SVM classifier [CSK11]. The LIBCUDANN library is used for

the GPU ANN classifier [Don11]. An IDS evaluation dataset such as the NSL-KDD

dataset creates a baseline for each of the machine learning algorithms under

consideration [TBL09b].

2. Implement the anomaly-based NIDS using CPU algorithms for both SVM and

ANN. The SVMs under evaluation are Gaussian kernel support vector machines

from the LIBSVM library; the LIBCUDANN library provides both a CPU-based

implementation and a GPU-based implementation of the artificial neural network

under consideration [ChL11][Don11]. The performance metrics of each algorithm

are collected for both the parallel and serial implementations of the anomaly-based

NIDS.

3. Implement an ensemble of classifiers to classify packet payload data preprocessed

using 2⌫-gram frequency analysis [PAF09]. Ensembles are created using di↵ering

numbers of base classifiers and the majority voting and final ANN classifier

combination methods.

3.2 System Boundaries

The System Under Test (SUT) is the GPU-accelerated Network Intrusion Detection

System (GNIDS) depicted in Figure 3.1. It consists of a host machine, a tra�c

preprocessor, a CUDA compatible GPU, a network connection, an anomaly detection

method, and an alert reporter. This system receives tra�c from the network connection

and processes it through its anomaly detector. The detector performs tra�c classification

and labels the tra�c as normal or anomalous. The alert reporter writes a report of
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anomalous tra�c to a log for future review; it also sends alert summary data for the

anomalous connections to an alert monitor. In this research, the scope is limited to the

detector itself; the alert monitor is not implemented. Additionally, the GPU chipset scope

is limited to GPUs manufactured by NVIDIA for compatibility with CUDA-based

machine learning libraries and the host is a Dell T7500 running Windows 7 SP1. This

research simulates the SUT’s network connection and tra�c processor by feeding

preprocessed, recorded network tra�c to the detection algorithm. The Component Under

Test (CUT) is the anomaly detection method. Specifically, the type of machine learning

algorithm or ensemble of algorithms in use and whether it is executed on the CPU or GPU

is tested.
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Figure 3.1: GPU-Accelerated Network Intrusion Detection System
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3.3 System Services

The service the system provides is the classification of network tra�c. The machine

learning algorithm used in the anomaly detector analyzes the tra�c passed to the system

and labels it as one of two classes. The first classification is normal tra�c. This is tra�c

that fits the pattern or baseline of day-to-day tra�c for the host or entire network,

depending on the detector’s assigned scope. When the tra�c does not fit the normal

pattern of activity, it is labeled as anomalous tra�c. Depending on the machine learning

algorithm and the quality of the training dataset, tra�c can be misclassified. This

misclassification can result in normal tra�c being labeled as anomalous, a false positive

result, and in anomalous tra�c being labeled as normal, a false negative result. When an

IDS is evaluated for accuracy, these are the primary failure or error conditions considered.

As with any computer system, the system can be loaded with more tra�c than it can

process, resulting in a third failure condition, denial-of-service. The denial-of-service

failure modes are outside the scope of this research.

3.4 Workload

The workload o↵ered to the system consists of preprocessed, recorded network

tra�c. The standard operation for GNIDS is to analyze the network tra�c provided over

its network connection. For this research, GNIDS is fed network tra�c from two test

datasets.

The MIT Lincoln Labs DARPA 1998 and 1999 IDS evaluation datasets and their

derivative, the ACM Knowledge Discovery and Data mining (KDD)1999 dataset, are

commonly used to evaluate anomaly-based IDS performance. The DARPA datasets

consist of several weeks worth of recorded tra�c from a simulated Air Force network

[MIT12]. The KDD-1999 dataset is a processed version of the DARPA 1998 dataset for

use by machine learning classifiers [LeS00][ACM99]. This research uses a modified
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version of the KDD-1999 dataset, the Network Security Laboratory (NSL) KDD dataset,

for the baseline comparison between the considered machine learning algorithms

[TBL09b].

The NSL dataset takes the KDD-1999 dataset and attempts to address some of the

common complaints against it by modifying the distribution and replication of records in

the dataset. The original KDD-1999 dataset has numerous redundant records in both the

training and testing data. According to Tavallaee, the training set is reduced by 78.05% by

removing the redundant records. These redundant records have the e↵ect of biasing

classifiers towards those types of records, resulting in poorer detection rates for the less

frequent records [TBL09a]. While this dataset does address some of the problems of

KDD-1999, it is still not considered to be representative of network tra�c found in a

typical enterprise network. However, due to the lack of publicly available IDS evaluation

sets, it is used for the purpose of benchmark comparisons between the classifiers in this

research.

3.4.1 NSL-KDD Evaluation Workload Creation. This research uses a subset of the

NSL-KDD train+.txt file for its evaluation and performs k-fold cross-validation to

evaluate the performance of the classifiers [TBL09b][RuN09]. The dataset is split into ten

folds. The classifier is trained on nine folds and tested on the last fold. This is repeated ten

times using each fold as a test set and the results are collected. The train+.txt file contains

125,973 training examples with the class distribution shown in Table 3.1.
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Table 3.1: Tra�c Distribution for NSL-KDD Dataset

Tra�c Class Samples % Total Samples

Normal Tra�c 67343 53.458

DoS Tra�c 45927 36.457

User to Root Tra�c 52 0.041

Remote to Local Tra�c 995 0.789

Probe Tra�c 11656 9.253

The datasets created for this research consist of randomly selected samples from the

NSL-KDD train+.txt file. First, the file is processed and the attack labels are replaced with

the tra�c class of 0 for Normal tra�c, 1 for DoS tra�c, 2 for the User to Root tra�c, 3 for

the Remote to Local tra�c, and 4 for the Probe tra�c. Since machine learning algorithms

such as SVMs and ANNs need numeric inputs, the symbolic features such as the protocol

type and flags are mapped to a binary vector of 0s and 1s to indicate which value is present

in the instance. For example, the input ”TCP” is mapped to < 0, 1, 0 > as it is the second

of three values occurring in the dataset. This symbolic substitution is performed for the

protocol type (3 values), service (71 values), and flag features (11 values). Additionally,

the numeric input features of the file are scaled for each instance according to [ChL12]:

X0 =
(x � mini) ⇤ (ScaleMax � ScaleMin)

(maxi � mini)
(3.1)

where X0 is the scaled value for a given feature i, x is the original value for the feature i,

and maxi and mini refer to the maximum and minimum values for the feature i in the

entire dataset. This research uses a ScaleMin of 0 and a ScaleMax of 1. After scaling the

input features, a randomized subset of the dataset is taken, using each instance only once.

The subset is created by placing the instances for each tra�c class in a list and, using the

C# System.Random object, selecting the target number of instances from each list without

replacement and placing them in a single output dataset. The original class distribution
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and new class distributions (10% subset) are given in Tables 3.1 and 3.2, respectively. The

sample labels are mapped to -1 for Attack (classes 1-4) and +1 for Normal (class 0) in the

final dataset. The newly created dataset is then split into ten folds for use in k-fold

cross-validation [RuN09]. The dataset creation process is repeated for each of the levels

of the tra�c set size factor as described in Section 3.7. The distributions of the remaining

factor levels are included in Appendix A.

Table 3.2: Tra�c Distribution for NSL-KDD 10% Subset

Tra�c Class Samples % Total Samples

Normal Tra�c 6734 53.465

DoS Tra�c 4592 36.459

User to Root Tra�c 5 0.04

Remote to Local Tra�c 99 0.786

Probe Tra�c 1165 9.25

3.4.2 McPAD Evaluation Workload Creation. The second workload o↵ered to the

system is a set of tra�c payloads provided by Perdisci [Per09]. The normal data consists

of a subset of the normal tra�c from the first week of the 1999 DARPA evaluation dataset.

The attack data consists of several standard HTTP attacks and several capture files of

polymorphic blending attacks designed to evade payload frequency analysis based

techniques like those used in Multiple-Classier Payload-based Anomaly Detector

(McPAD) and this research [PAF09]. The files used in this research are provided with

McPAD. The payloads are processed using the variation on n-gram frequency analysis

implemented by Perdisci for McPAD. Perdisci utilizes a sliding window variant of 2-gram

analysis called 2⌫-gram analysis [PAF09]. The occurrence frequency of bytes ⌫ positions

apart from each other is measured. A sliding window of length ⌫+2 is used to measure all
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of the byte pairs in the payload. By using distinct values of ⌫, di↵erent characteristics of

the payloads are modeled by the occurrence frequencies. A clustering algorithm is used to

reduce the number of features resulting from the 2⌫-gram process. The feature clustering

process results in a dataset containing a set of clustered features; in this research, 40

clusters and 160 clusters are used.

McPAD utilizes unsupervised machine learning to perform its classification,

requiring only non-malicious tra�c for training. McPAD is trained using preprocessed

non-malicious tra�c and uses its 2⌫-gram packet processor to process and classify test

packets at runtime. Since this research focuses on supervised learning instead of

unsupervised and uses preprocessed files instead of implementing the real-time packet

processor, the McPAD processing technique is used to preprocess all of the evaluation

tra�c. As in McPAD, the training.pcap tra�c packets are used to create a set of feature

clustering maps. The maps are then used to create the processed versions of both the

non-malicious and malicious tra�c pcap files. This results in a set of files containing the

preprocessed instances and labels for each input pcap file. The processed files are then

combined into a single dataset. Due to the size of the training.pcap file, a 25% subset of

randomly selected instances is used in the creation of the combined dataset; all of the

other files are used in their entirety. For repeatability, the specific packet instances used in

each file are recorded. A randomized 60% subset of the dataset is selected, using each

instance only once and is split into ten folds for use in cross-validation. As with the

NSL-KDD workload, a C# program is used to perform the random selection by creating

lists of the instances for each tra�c file and selecting, without replacement, the target

number of instances from each list using the C# System.Random object. The subset

distribution is presented in Table 3.3. This process is repeated for all seven values of ⌫

used in this research as described in Section 3.7.
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Table 3.3: Input File Distribution for McPAD 60% Subset

Input File Instances % of Dataset

training (25% subset) 15327 71.18%

1-gram-attacks-all 1878 8.72%

2-all-gram-attacks-all 1869 8.68%

all attacks payloads 121 0.56%

all morphed shellcode attacks payloads 475 2.21%

12-gram-attacks-all 1863 8.65%

3.5 Performance Metrics

The following metrics are used to evaluate the performance of GNIDS:

• Detector Execution Time - The execution times for the training and testing

operations are collected for the anomaly detector. These times are used to evaluate

the relative performance of the CPU and GPU implementations for the machine

learning algorithms under consideration.

• Overall Accuracy - The overall accuracy for each classifier is collected. It is

calculated as the number of true positives and true negatives divided by the total

number of instances analyzed. The system determines the number of true positives

and true negatives by comparing the predicted tra�c labels to the labels provided

with the validation folds. The accuracies for each cross-validation run are averaged

and used as the overall accuracy for the experimental run [RuN09].

• False Positive Rate - For an anomaly-based intrusion detection system, any tra�c

classified as an anomaly that is actually valid tra�c is a false positive. The false

positive rate is the proportion of negatives that are incorrectly labeled as positives.

The false positive rate is calculated as the number of false positives divided by the
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number of false positives and true negatives [Ham12]. The system determines the

number of false positives and true negatives by comparing the predicted tra�c

labels to the labels provided with the validation folds. The false positive rates for

each cross-validation run are averaged and used as the overall false positive rate for

the experimental run [RuN09].

• False Negative Rate - For an anomaly-based intrusion detection system, any tra�c

classified as normal tra�c that is actually anomalous tra�c is a false negative. The

false negative rate is the proportion of positives that are incorrectly labeled as

negatives. The false negative rate is calculated as the number of false negatives

divided by the number of false negatives and true positives [Ham12]. The system

determines the number of false negatives and true positives by comparing the

predicted tra�c labels to the labels provided with the validation folds. The false

negative rates for each cross-validation run are averaged and used as the overall

false negative rate for the experimental run [RuN09].

3.6 System Parameters

The parameters for the system under test are:

• Host Operating System - The OS impacts the compatibility level of the GPU drivers

with the GPGPU standards. Windows 7 SP1 64-bit is used as it is the newest

Windows OS currently supported.

• Host CPU - The CPU chipset and performance characteristics can impact the

performance of both the CPU and GPU implementations of the detection system as

portions of GPGPU programs are executed on the host CPU. The host is a Dell

T7500 configured with dual Xeon X5650 processors running at 2.67 GHz.
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• Host RAM - The amount of host system memory impacts the performance of the

CPU and GPU implementations of the detection system as the host RAM is used for

portions of both implementations. The test system used in this research is equipped

with 48 GB of DDR3 memory.

• Host Hard Drive - The hard drive of host system impacts the performance of the

CPU and GPU implementations of the detection system as the host performs swaps

of host memory with the page file. The Dell T7500 used in this research is equipped

with 2 7200 rpm 1 TB drives in a RAID 0 configuration.

• PCI-Express Slot - The version of the PCI-E slot in the host can limit the

performance of the SUT since older versions of the PCI-E standard cannot support

the higher data throughput required by newer GPU chipsets. The PCI-E version

used in this research is version 2.0.

• GPU Chipset - The specific chipset of the GPU has performance implications for

GPGPU applications. Some chipsets have substantially fewer processing cores than

others as well as a wide range of GPU clock speeds. The amount of video memory

on the specific GPU also limits the amount of tra�c data that can be stored and

analyzed by the GPGPU detector. Additionally, the bandwidth of the video memory

varies from GPU to GPU which impacts how quickly data can be transferred. This

research uses a PNY NVIDIA GeForce GTX 280 graphics card. The GTX 280 is a

CUDA compute capability 1.3 device with 30 multiprocessors and 240 CUDA cores

[NVI11b]. The GTX 280 is used as it has the same compute capability as the card

used in the development of GTSVM, the CUDA support vector machine library

selected for this research. The key hardware specifications of the card are presented

in Table 3.4 [PNY12].
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Table 3.4: Specifications for PNY GeForce GTX 280

Component Specification

Bus Type PCI-E 2.0

Core Clock 602 MHz

Shader Cores 240

Shader Clock 1296 MHz

Memory bus 512-bit

Memory Size 1024 MB DDR3

Memory Clock 2214 MHz

Memory Bandwidth 141.7 GB/s

• Machine Learning Algorithm - The particular detection algorithm has the largest

potential impact on the performance of GNIDS. The training time, classification

time, and overall accuracy are all directly dependent on which algorithm is in use.

• Algorithm Parameters - The parameters used to create the machine learning

classifier directly a↵ect the execution time and classification performance of the

given algorithm. The algorithm parameters (cost and gamma for SVMs and hidden

layer size for ANNs) are chosen based on a preliminary parameter search performed

on a separate dataset. The parameters are described in Section 3.8.

• Detector Execution Model - The execution model used for the anomaly detection

algorithm directly impacts the performance of GNIDS. The parallel model executes

the algorithms using CUDA GPU libraries, while the serial model utilizes CPU

implementations of the algorithms.
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3.7 Factors

The factors and levels for this research are either system factors or workload factors.

A summary of the factor levels are given in Tables 3.5 and 3.6 for the NSL-KDD and

McPAD workloads, respectively.

Table 3.5: Factors and Levels for NSL-KDD Workload

Factor Level 1 Level 2 Level 3

Machine Learning Algorithm ANN SVM —–

SVM Parameter Set High-C Low-C —–

Detector Execution Model CPU GPU —–

NSL- KDD Tra�c Set Size 10% Subset 20% Subset 30% Subset

Table 3.6: Factors and Levels for McPAD Workload

Factor Level 1 Level 2 Level 3

Machine Learning Algorithm ANN SVM —–

Detector Execution Model CPU GPU —–

Number of Base Classifiers 3 BCs 5 BCs 7 BCs

Number of Feature Clusters 40 Clusters 160 Clusters —–

Combination Method Majority Vote Final ANN Classfier —–

3.7.1 System Factors. The system factors for this research are:

• Machine Learning Algorithm - A primary goal of the research is to evaluate the

impact of using di↵erent machine learning algorithms for anomaly-based detection.

GNIDS is tested with a Gaussian kernel support vector machine and a feed-forward,
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single-layer neural network with batch back-propagation learning as these are two

commonly used machine learning algorithms that have CUDA implementations.

• Detector Execution Model - An evaluation of the performance di↵erence a↵orded

by implementing the intrusion detection system in a CUDA GPU parallel model

rather than a serial CPU model is a primary goal of this research. The levels for this

factor are CUDA GPU parallel and CPU serial. It is anticipated that the use of the

GPU model will have a large impact on the execution time of the detection system,

especially in the classifier training phase.

• Number of Base Classifiers - The number of base classifiers used in an ensemble

classifier contributes to the amount of information used to make the ensemble’s final

decision for the tra�c. This factor has three levels: 3 base classifiers, 5 base

classifiers, and 7 base classifiers. Each base classifier is given a dataset processed

using a di↵erent value of ⌫. The specific values of ⌫ used to train the base classifiers

are presented in Table 3.7.

Table 3.7: Values of v for Base Classifier Datasets

Base Classifiers Values of v Used

3 base classifiers 3, 5, 7

5 base classifiers 1, 3, 5, 7, 9

7 base classifiers 0, 1, 3, 5, 7, 9, 10

• Ensemble Combination Method - The ensemble combination method is used by the

ensemble to decide which label to give a tra�c instance based on the predictions of

the base classifiers. This factor has two levels: majority vote and final ANN

classifier. The final ANN classifier operates by using the predictions of the base

classifiers for the training data as training input for an ANN classifier to determine
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dynamic weights for each base classifier. The final classifier factor level adds

significant processing time over the majority vote method, but has the potential to

increase the overall accuracy due to its ability to dynamically weight the base

classifier predictions.

3.7.2 Workload Factors. The workload factors for this research are:

• NSL-KDD Machine Learning Algorithm Parameters - The machine learning

parameters used for the KDD workload are chosen based on a preliminary

parameter search using the provided KDDTrain+20 Percent file [TBL09b]. The

ANN use a hidden layer of 32 neurons for this workload. Two parameter sets are

used for the SVM classifiers. The high-c set uses a value of 64 for C and a value of

2 for Gamma. The low-c set uses a value of 1 for C and a value of 8 for Gamma.

These sets are chosen to evaluate the performance of the SVM implementations

with both high and low cost values while maintaining comparable accuracies. Both

SVM implementations are evaluated with both the high-c and low-c parameter sets.

• NSL-KDD Tra�c Set Size - The size of the dataset used to train and test the

machine learning classifiers directly impact the training and testing time of the

classifiers. This factor has three levels: a 10% subset of the train+.txt file, a 20%

subset, and a 30% subset. Each subset is sampled from the same population of data

and is made up of unique samples from the NSL-KDD dataset as described in

Section 3.4.

• McPAD Ensemble Machine Learning Algorithm Parameters - The machine learning

parameters for the McPAD workload are chosen based on a parameter search using

a separate subset of the combined McPAD dataset. The ANNs use a 2 neuron

hidden layer for this workload. The CPU SVM uses a C of 64 and the GPU SVM

uses a C of 0.125. Gamma is fixed at 0.5 for both SVMs. These values of C are
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chosen to evaluate the relative performance of the SVM implementations on the

McPAD dataset while maintaining comparable accuracies.

• McPAD Feature Clusters - A primary goal of this research is to determine

performance di↵erences between the CPU and GPU implementations of the

ensemble classifier on 2⌫-gram processed payload data. This factor has two levels:

the packet preprocessor is run with 40 clusters and 160 clusters to determine the

impact of including more input feature information on the performance of the base

classifiers and the accuracy of the ensemble as a whole. The values of 40 and 160

are chosen as these are the median and maximum number of clusters Perdisci uses

in the evaluation of McPAD [PAF09].

3.8 Evaluation Technique

The evaluation technique for this research is direct measurement. The detector

records system performance counter values before and after running the machine learning

training and testing operations and calculates the number of microseconds that elapsed.

The timer methods used to record these values are the QueryPerformanceCounter and

QueryPerformanceFrequency functions provided by windows.h. When the timer is started,

it records the value of the counter in an internal variable and the second call returns the

number of microseconds elapsed since the timer was started. For the sake of simplicity,

the tra�c data is preprocessed for the respective detection algorithms and read from a file

instead of transmitted over the network and examined using a packet capture tool.

3.9 Experimental Design

This research uses a full factorial experimental design. Since the research goals can

be separated into two categories, the performance of the detector implementations and the
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performance of the ensemble configurations, the research consists of two full factorial

experiment sets.

The first set of experiments determines the e↵ect of the machine learning algorithm

and the execution model on the performance of the detector. The experiment is run with

each of the two machine learning algorithms for each of the execution models with both

parameter sets for SVM and the three file sizes. This gives six algorithm levels and three

dataset sizes for a total of 18 experiments before considering replications. Support vector

machines are deterministic for the same kernel parameters and training data so the

variance is not significant for the accuracy metrics. The execution time, however, is

dependent on concurrent processes on the test machine and the kernel parameters used to

train the classifier. Artificial neural networks are trained with a random initialization,

resulting in non-deterministic output for the same training data and layer parameters.

The second set of experiments determines the relative performance of the machine

learning classifiers on payload analysis data. Ensembles are trained utilizing each machine

learning algorithm with each execution model for two feature cluster sizes and three

ensemble sizes for both of the ensemble combination methods. This gives a total of 48

experiments before considering replications.

Each factor level evaluation is conducted using 10-fold cross-validation. This results

in 180 training and testing operations for the first experiment and 480 for the second

before considering replications. Due to the large number of folds and factor levels, only

five replications are conducted to account for variance in execution times and accuracies

for both experiments. This gives a total of 330 experiments. As a result of the low number

of replications conducted, the 90% confidence level is used for the statistical analysis of

the results.
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3.10 Methodology Summary

This research explores the performance implications of using machine learning

algorithms to perform anomaly-based intrusion detection in a parallel computing context.

The factors identified for evaluation are the specific machine learning algorithm used, the

execution model for the detection method, and the ensemble configuration. The

performance metrics chosen to evaluate the impact of these factors are the false positive

rate, the false negative rate, the detector execution time, and the accuracy of the detector.

A full factorial experimental design is used on an actual implementation, resulting in a

total of 330 experiments.
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4 Results and Analysis

This chapter presents and analyzes the results of the two experiments. The results of

Experiment 1 are discussed in Section 4.1. Section 4.2 presents the results and discussion

of Experiment 2. An overall analysis is presented in Section 4.3. Lastly, a chapter

summary is given in Section 4.4.

4.1 Results and Analysis of Experiment 1

In Experiment 1, the NSL-KDD dataset is used to create a baseline comparison of the

relative performances of the CPU and GPU machine learning algorithms under

consideration. The size of the datasets is varied for all of the machine learning algorithm

factor levels. The relative performance of each of the classifiers is examined at each of the

dataset sizes. Using version 2.13.1 of the R statistical software package for Windows,

Tukey’s Honest Significant Di↵erence test is used to identify the significant di↵erences in

mean execution times at the 90% confidence level [Tea12]. The accuracies of the

classifiers are compared for each of the factor levels using Wilcoxon’s Signed-Rank test

using R and the coin package [HHV08]. Section 4.1.1 examines the relative performances

of the CPU and GPU implementations of the machine learning classifiers. Section 4.1.2

examines the relative accuracies of the machine learning classifiers.

4.1.1 Analysis of Di↵erences in Execution Time. This section examines the nature

of the performance di↵erences for the training and testing operations of the CPU and GPU

classifiers. Section 4.1.1.1 presents the results of the Tukey tests for the di↵erences in

mean execution times between classifiers. Section 4.1.1.2 compares the performances of

the ANN implementations. Section 4.1.1.3 evaluates the impact of the SVM parameters on

the performance of the CPU and GPU implementations. An evaluation of the performance

di↵erences between the CPU and GPU SVMs is conducted in Sections 4.1.1.4 and 4.1.1.5.
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4.1.1.1 Statistical Significance of Di↵erences in Execution Time. Tukey’s

Honest Significant Di↵erence (HSD) test is used to compare the 90% confidence intervals

for the classifier’s average train and test times. The results of the Tukey tests indicate that

the size of the dataset has a significant impact on the training and testing times for each

algorithm at each factor level. None of the 90% confidence intervals for the di↵erence in

mean execution times included zero.

A comparison between the classifier types at each of the dataset size factor levels

shows there is a significant di↵erence in the mean training times between all of the

classifiers. When comparing the testing times of the algorithms, most comparisons show a

significant di↵erence in mean testing times for each of the size factor levels. At the larger

size factor levels, however, the high-c GPU (GH) support vector machine and the low-c

GPU (GL) support vector machine do not show a significant di↵erence in mean testing

times. This occurs at the 20 percent and 30 percent factor levels as shown in Table 4.1.

The table presents the results of the Tukey HSD test for the comparison of mean testing

times of the two GPU SVMs. The di↵erence column presents the di↵erence in the mean

testing time for the 20 and 30 percent tra�c size factor levels. The Lower and Upper

columns present the lower and upper limits of the 90% confidence interval for the

di↵erence in means. As the intervals for both factor levels include zero, there is no

significant di↵erence in mean testing time for the GPU SVMs at the 90% confidence level.

The rest of the classifiers do show a significant di↵erence in mean testing times. The R

commands used for the Tukey tests are included in Appendix A.

Table 4.1: Di↵erence in Mean Testing Time (ms) for the GPU Support Vector Machines

Factor Level Algorithms Lower Di↵erence Upper Adjusted P-Value

20 Percent GL-GH -5.17196 1.99582 9.16360 0.9703667

30 Percent GL-GH -13.68219 5.07120 23.82459 0.9738601
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4.1.1.2 Comparison of ANN Implementations. Tables 4.2 and 4.3 provide the

mean training and testing times for the ANN implementations for each of size factor

levels. An examination of the ratios of the execution times provides an indication of the

degree of di↵erence between the mean execution times of the CPU and GPU

implementations for the same machine learning algorithm. The GPU ANN (AG) achieves

an average training time speedup of 27.55x over the CPU ANN (AC) implementation for

the 10 percent dataset. As shown in Table 4.4, the larger datasets show larger speedups

with averages of 28.51x and 29.17x, respectively. The GPU ANN achieves an average

testing time speedup of 2.46x over the CPU ANN for the 10 percent dataset and speedups

3.72x and 4.53x for the larger datasets as shown in Table 4.4. The increasing trend in the

speedups are easily explained by the nature of the calculations involved and the observed

impact of the size of the dataset on the CPU and GPU implementations.

Table 4.2: Mean Execution Times for CPU ANN (AC)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 260.820 0.410 19.131 0.038

20 525.340 0.620 38.080 0.140

30 800.060 0.430 56.901 0.168

Table 4.3: Mean Execution Times for GPU ANN (AG)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 9.466 0.006 7.767 0.060

20 18.429 0.001 10.251 0.093

30 27.424 0.004 12.561 0.095
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Table 4.4: Ratio of CPU ANN Times to GPU ANN Times (AC/AG)

Size Training 90% C.I. Testing 90% C.I.

10 27.554 0.057 2.463 0.018

20 28.506 0.035 3.715 0.034

30 29.174 0.019 4.530 0.036

In the training phases, an ANN must iterate through the entire back-propagation

algorithm again for each added training example, a linear increase in complexity. The

testing operation is similar. The ANN must calculate the aggregate inputs for each new

example and compute the activation function values for each neuron in the network. As

long as the number of neurons in the network stays the same, the increase in the number

of calculations is directly proportional to the increase in the size of the testing data. As a

result, the serial implementation of the CPU is a↵ected in an approximately linear fashion

for both training and testing as shown in Figures 4.1 and 4.2. The GPU, however, can

perform these added calculations in parallel, achieving better scaling ratios for its

execution times. In the training phase, the GPU scaling ratio is approximately linear as

shown in Figure 4.1. The testing phase, however, shows superior scaling for the GPU as

shown in Figure 4.2.
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Figure 4.1: ANN Training Times versus Dataset Size
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Figure 4.2: ANN Testing Times versus Dataset Size

The di↵erence in dataset size impact between the GPU train and test times is likely

the result of the di↵erence in complexity of the training and testing operations. The

training step requires the execution of a CUBLAS call and a CUDA kernel for the

feed-forward and back-propagation steps and a CUBLAS call for the network weights

update before copying the values to host memory. Each of these steps is dependent on the
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previous steps in the back-propagation algorithm. The testing operation, however, requires

fewer operations before the resulting values are copied to host memory. Additionally, the

calculated values are independent, meaning that more examples can be calculated in

parallel without waiting for results of previous calculations.

4.1.1.3 Impact of Parameter Sets On SVM Implementations. A comparison

of the training and testing times for the CPU SVM using both the high-c (LH) and low-c

(LL) parameter sets provides an indication of the impact of changing the C parameter on

the performance of LIBSVM for this dataset. Tables 4.5 and 4.6 provide the mean training

and testing times for the CPU SVM implementation for each parameter set. For each

factor level, the high-c CPU outperformed the low-c CPU in terms of training time as

shown in Table 4.7.

Table 4.5: Mean Execution Times for CPU SVM-High (LH)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 5.239 0.016 336.205 0.441

20 28.170 0.140 958.340 5.630

30 95.830 0.620 1801.910 6.660

Table 4.6: Mean Execution Times for CPU SVM-Low (LL)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 12.013 0.044 649.047 0.334

20 90.330 0.310 2219.080 7.730

30 188.100 1.200 4869.700 24.200
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Table 4.7: Ratio of CPU SVM-L Times to CPU SVM-H Times (LL/LH)

Size Training 90% C.I. Testing 90% C.I.

10 2.293 0.006 1.931 0.002

20 3.207 0.026 2.316 0.020

30 1.963 0.020 2.703 0.021

The average training speedups for the 10 percent dataset and 30 percent dataset are

2.3x and 1.96x, respectively. The 20 percent speedup was greater at an average of 3.2x.

This greater value for the 20 percent set is due to the relative e↵ects of scaling on the

classifiers. As is shown in Figure 4.3, the high-c SVM is less impacted by the increase

from 10 to 20 than the low-c. The 20 to 30 step, however, had a more severe impact on the

high-c (LH) than the low-c (LL) as indicated by the larger increase in slope of the high-c

from 20 to 30. The slope of the low-c increased by approximately 25%, whereas the slope

of the high-c nearly tripled.
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Figure 4.3: CPU SVM Training Times versus Dataset Size

56



When comparing testing times, the high-c CPU SVM also performs consistently

better than the low-c CPU SVM with average testing speedups of 1.93x, 2.32x, and 2.7x

for the three dataset levels as shown in Table 4.7. Unlike the training phase, the scaling for

the high-c SVM in the testing phase is superior to that of the low-c as shown in Figure 4.4.

These results indicate that the CPU SVM implementation shows better performance when

higher cost and lower gamma parameters are used for the NSL-KDD workload.

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

"! #! $!

!
"
#
$
%
&
'
(
!
%
)
"
(
*
)
#
+

!"#"$%#&'()%*+,

() ((

Figure 4.4: CPU SVM Testing Times versus Dataset Size

On the GPU, the low-c SVM (GL) performs consistently better than the high-c SVM

(GH) when comparing the training times as shown in Figure 4.5. For the 10 percent

dataset, the average speedup is 8.83x. The 20 and 30 percent datasets show greater

speedups at averages of 10.6x and 13.6x as shown in Table 4.8. Unlike the CPU SVMs,

the di↵erences in scaling between the GPU SVM classifiers are not as large as shown in

Tables 4.9 and 4.10; however, the high-c SVM shows a greater increase in relative

execution time than the low-c SVM, leading to the increasing gains for the larger datasets.
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Figure 4.5: GPU SVM Training Times versus Dataset Size

Table 4.8: Ratio of GPU SVM-H Times to GPU SVM-L Times (GH/GL)

Size Training 90% C.I. Testing 90% C.I.

10 8.833 0.400 0.964 0.033

20 10.589 0.262 0.973 0.010

30 13.613 0.617 0.952 0.014

The two GPU support vector machines show comparable testing times with the

high-c slightly outperforming the low-c as shown in Table 4.8. These di↵erences are only

statistically significant at the 10 percent factor level as is shown by the Tukey test results

discussed in Section 4.1.1.1. Tables 4.9 and 4.10 provide the mean training and testing

times for the GPU SVM implementation for each parameter set. These results indicate

that the GPU SVM implementation shows better training and comparable testing

performance when lower cost parameters are used for this workload.
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Table 4.9: Mean Execution Times for GPU SVM-High (GH)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 4.330 0.150 41.810 1.230

20 7.670 0.150 72.322 0.719

30 15.300 0.310 100.361 0.785

Table 4.10: Mean Execution Times for GPU SVM-Low (GL)

Size Training Time (s) 90% C.I. Testing Time (ms) 90% C.I.

10 0.490 0.007 43.389 0.443

20 0.725 0.017 74.318 0.421

30 1.125 0.032 105.430 1.130

Overall, the SVM testing times are impacted less by the increase in dataset size than

the training times. This is attributable to the relative di�culty of the classification

operation to the training operation. To classify a new example, the SVM applies the

previously computed decision function to the instance, computing a sum of the product of

support vectors and the kernel function value of the new example’s input features. In the

training phase, each example is evaluated to determine the optimal support vectors to

separate the training examples with a maximum separating margin according to the cost

and gamma parameters used, a significantly more complicated operation. Like the ANN

implementations, the GPU SVM shows better scaling capabilities than the CPU SVM.

4.1.1.4 Comparison of CPU and GPU SVM Training Times. The parallel

nature of the GPU implementation is evident in the observed speedups of the GPU SVMs

over the CPU SVMs. Both of the GPU SVMs outperform the CPU implementation on all

of the dataset sizes. The performance di↵erence between the GPU and CPU

implementations increases as the size is increased because the execution times on the
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GPU are not impacted as severely by the size increase as is discussed in Section 4.1.1.3.

Since the GPU performs the training of the SVM using blocks of threads, the additional

work is divided up among more blocks. This e↵ectively increases the e�ciency of the

GPU as more training examples are added, whereas the CPU implementation must

perform all of its additional work serially. The ratios of execution times for the support

vector machine implementations are given in Tables 4.11-4.14.

The high-c GPU SVM and high-c CPU SVM are fairly close in training performance

for the smallest dataset with an average gain of 1.2x for the GPU implementation. At the

larger sizes, however, the superior scaling of the GPU implementation results in

performance gains of 3.7x and 6.3x over the CPU SVM (Table 4.11). The gains over the

low-c CPU also show increasing gains as the dataset size is increased, ranging from 2.8x

to 12.3x for the di↵erent sizes (Table 4.12).

Table 4.11: Ratio of CPU SVM-H Times to GPU SVM-H Times (LH/GH)

Size Training 90% C.I. Testing 90% C.I.

10 1.212 0.043 8.047 0.233

20 3.674 0.069 13.252 0.083

30 6.267 0.127 17.955 0.108

Table 4.12: Ratio of CPU SVM-L Times to GPU SVM-H Times (LL/GH)

Size Training 90% C.I. Testing 90% C.I.

10 2.779 0.096 15.535 0.448

20 11.781 0.217 30.690 0.410

30 12.301 0.276 48.525 0.551
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The low-c GPU SVM shows much larger di↵erences in performance when compared

to the CPU implementations. As shown in Table 4.13, due to the significantly lower

impact of the dataset size on the GPU low-c SVM, the gains increase dramatically as the

dataset size is increased. The low-c CPU comparison shows even larger gains with an

average of 167x for the largest dataset as shown in Table 4.14.

Table 4.13: Ratio of CPU SVM-H Times to GPU SVM-L Times (LH/GL)

Size Training 90% C.I. Testing 90% C.I.

10 10.689 0.139 7.749 0.078

20 38.898 0.765 12.895 0.080

30 85.250 2.420 17.092 0.193

Table 4.14: Ratio of CPU SVM-L Times to GPU SVM-L Times (LL/GL)

Size Training 90% C.I. Testing 90% C.I.

10 24.511 0.374 14.960 0.155

20 124.743 3.207 29.860 0.217

30 167.337 5.210 46.193 0.618

4.1.1.5 Comparison of CPU and GPU SVM Testing Times. As is discussed in

Section 4.1.1.3, the CPU SVM implementation shows considerably more impact on the

testing time from the increase in tra�c set size than the GPU SVM implementation. As

with the training time ratios, this results in an increasing speedup over the CPU

implementation as the size is increased.

• The high-c GPU shows average gains over the high-c CPU of 8x, 13.3x, and 18x for

the three dataset sizes as presented in Table 4.11.
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• The high-c GPU shows average gains over the low-c CPU SVM of 15.5x, 30.7x,

and 48.5x for the three dataset sizes as shown in Table 4.12.

• The low-c GPU shows similar gains over the CPU implementations as given in

Tables 4.13 and 4.14.

These performance di↵erences are easily explained by the nature of the computations

involved. Since the classification of a test set by a support vector machine requires the

same calculations for each example, the GPU can launch additional blocks of parallel

threads to handle the increased number of instances, while the CPU must compute the

classification of each example in series.

This section evaluates the performance di↵erences between the serial and parallel

implementations of GNIDS. Overall, both of the GPU machine learning algorithms are

less a↵ected by increases in workload than the CPU implementations. For the support

vector machines, the GTSVM library is significantly faster than the LIBSVM library for

both parameter sets, especially for the larger tra�c set sizes. Additionally, it is observed

that the CPU SVM library does not scale as well with high-c parameters as it does with

low-c parameters; however, the performance is significantly better for the high-c CPU

SVM at each size level. The GPU SVM library performs better with lower ranging cost

parameters in both scaling and training time, but shows little di↵erence in testing time.

4.1.2 Analysis of Classifier Accuracy. This section evaluates the overall prediction

accuracies for the machine learning algorithms to determine the more e↵ective algorithm

for use on the GPU and the di↵erences in accuracy between the CPU and GPU

implementations. Due to the deterministic nature of support vector machines, the same

input parameters and training datasets will result in the same accuracy for each

replication. As a result, a non-parametric test is used to determine if there is a significant

di↵erence between the accuracies at the various factor levels. The accuracies of the
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classifiers are compared for each of the factor levels using Wilcoxon’s Signed-Rank test in

R. The specific R commands used are included in Appendix B. Due to the few number of

replications conducted, the 0.10 significance level is used.

An analysis of the di↵erences in results between the CPU and GPU implementations

of each machine learning algorithm for each dataset provides an indication of the relative

accuracies of the implementations. The Wilcoxon test indicates that there is no significant

di↵erence between the CPU (AC) and GPU (AG) artificial neural network

implementations for any of the datasets. This is as expected since the implementations use

the same algorithm regardless of the computing device.

The p-values for each of the other comparisons indicate there is a significant

di↵erence between the other classifiers for each of the datasets. This result is as expected

for the low-c and high-c SVM comparisons since the changes in cost and kernel

parameters for a support vector machine will impact the values for the underlying support

vectors. Changing the cost parameter impacts how sensitive the support vector machine is

to misclassified points when optimizing its support vectors and changing the value of the

gamma parameter for the Gaussian kernel impacts the overall shape and flexibility of the

margin separator, a↵ecting the classifier’s ability to separate the training examples

[HuW10]. The di↵erences between the CPU and GPU implementations with the same

SVM parameters are likely due to the di↵erences between the LIBSVM and GTSVM

support vector optimization algorithms, causing the support vector machines to arrive at

di↵erent solutions for the separator of the training data. The specific R commands used

are included in Appendix B.

At each of the tra�c set size factor levels, the SVM classifiers are significantly more

accurate than the artificial neural network classifiers. Figure 4.6 presents the average

accuracies for the classifiers. Of the SVM classifiers, the high-c GPU SVM (GH) has the

highest accuracy; the low-c CPU SVM (LL) has the lowest. The low-c GPU SVM (GL)

63



shows higher accuracies than the low-c CPU SVM, but lower than both of the high-c

SVMs.
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Figure 4.6: Average Accuracies for All Classifiers

While there is a statistically significant di↵erence in the accuracies of the support

vector machine classifiers, the practical di↵erences between the SVM classifiers are small.

Figures 4.7 and 4.8 present the average false positive and false negative rates for all of the

classifiers. The CPU low-c SVM (LL) shows the lowest false positives, but the highest

false negatives of the SVM classifiers. The high-c SVMs both perform similarly in the

false negatives; however, the GPU (GH) implementation shows lower false positive rates.

These results indicate that it is possible to take advantage of the GPU implementation’s

speedup with only a small impact on accuracy.
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Figure 4.7: Average False Positive Rates
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Figure 4.8: Average False Negative Rates

4.2 Results and Analysis of Experiment 2

In Experiment 2, the McPAD payload analysis technique is applied to a test dataset

provided by Perdisci with the McPAD source code [Per09]. The 2⌫-gram technique is used

to create multiple datatsets, a 40 cluster set and a 160 cluster set, for seven di↵erent values
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of ⌫. An ensemble of classifiers is created using varying numbers of base classifiers (BCs)

and two ensemble combination methods. Each base classifier uses a di↵erent ⌫-value

dataset. The relative execution times and final ensemble accuracies are compared for the

di↵erent classifier types. This experiment compares the CPU (AC) and GPU (AG)

implementations for ANN and a low cost parameter GPU SVM (GL) and a high cost

parameter CPU SVM (LH) as those are the better performing support vector machines in

Experiment 1 in terms of relative execution times. Section 4.2.1 examines the significance

of the di↵erences between the execution times caused by changing the dataset factor

levels. Section 4.2.2 explores the ratios of execution times between the CPU and GPU

implementations of the base classifiers. Section 4.2.3 compares the final accuracies of

each of the ensemble configurations and discusses the significance of di↵erences due to

the factor level changes.

4.2.1 Impact of Datasets and Cluster Levels on Classifier Execution Times. The

relative training times of the ensembles are compared using the execution times from the

majority vote combination method factor level with seven base classifiers. These times

represent all seven of the di↵erent datasets for each cluster level. The implementation for

the final classifier combination method ensemble is comparable in the training stage, but

the testing stage has an extra operation of converting the output into a format for use by

the final classifier. As a result, these execution times are not used for the analysis of

relative training and testing times.

As in Experiment 1, Tukey’s Honest Significant Di↵erence test is used to determine

if the di↵erence between mean execution times is significant for each machine learning

algorithm at the di↵erent factor levels. A comparison of the training and testing times for

all of the machine learning algorithms shows a significant di↵erence between some of the

datasets for each classifier. The specific datasets that di↵er vary from classifier to

classifier. This holds for the 160 cluster datasets as well. Since the classifiers all respond
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di↵erently to the changes in datasets, each dataset is examined as a separate factor level.

The R commands used are included in Appendix C.

An analysis of the di↵erences in mean training and testing times for each classifier

type when the number of clusters is changed is used to determine if the number of clusters

makes a significant impact on the execution time of the base classifier. The results of the

Tukey tests indicate that each classifier shows a significant di↵erence between the cluster

levels for every dataset for both training and testing. Since the change of cluster level is a

four-fold di↵erence in the number of input features per instance, it is expected to have a

significant impact on the execution time of the classifiers. The R commands used are

included in Appendix C.

4.2.2 Analysis of Di↵erences in Execution Times. The di↵erences between the

average execution times for each of the classifier types provide an indication of the

relative performance of each classifier on the McPAD processed datasets. R is used to

compare the di↵erence in means at the 90% confidence level between the base classifiers’

train and test times. For every dataset at the 40 cluster factor level, all of the mean training

times and the mean testing times are significantly di↵erent between the machine learning

algorithms. The 160 cluster level shows similar results for all of the datasets. The R

commands used are included in Appendix C.

4.2.2.1 Analysis of Di↵erences in ANN Implementations. An examination of

the mean training and testing times provides an indication of the degree of di↵erence

between the execution times of the CPU and GPU implementations of a classifier for the

same dataset. The GPU ANN (AG) shows a consistent speedup over the CPU (AC) for

training across the datasets as shown in Figures 4.9 and 4.10. The degree of speedup is

substantially lower than in Experiment 1, however. This is attributable to the size of neural

networks used in this experiment. Experiment 1 uses networks with a hidden layer of 32
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neurons, whereas this experiment utilizes only 2 hidden neurons. The ANN speedups are

not as large as the smaller network requires fewer calculations per training instance. The

observed average speedup between the CPU and GPU ANN for the 40 cluster set is

approximately 2-fold for the majority of the datasets. The 160 cluster set has more inputs

to the neural network and shows a larger degree of speedup due to the additional

calculations involved per training instance at an average increase of nearly 4-fold for the

majority of the datasets.
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Figure 4.9: Mean Training Times of ANNs for 40 Cluster Datasets
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Figure 4.10: Mean Training Times of ANNs for 160 Cluster Datasets

The relative testing times for the ANN implementations show the opposite result of

the training times. The CPU ANN is faster than the GPU ANN for all seven datasets.

Again, this is attributable to the low number of hidden layer neurons limiting the number

of calculations computable in parallel. As shown in Figures 4.11 and 4.12, the GPU

performs only marginally better when the number of clusters is increased to 160. The

negative impact of the low number of hidden layer neurons on the performance of the

GPU ANN in the testing stage overwhelms any gain observed from increasing the number

of input features.
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Figure 4.11: Mean Testing Times of ANNs for 40 Cluster Datasets
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Figure 4.12: Mean Testing Times of ANNs for 160 Cluster Datasets
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4.2.2.2 Analysis of Di↵erences in SVM Implementations. The support vector

machine classifiers show similar results as in Experiment 1. For all of the training

datasets, the GPU (GL) is faster than the CPU (LH). The degree of speedup shows some

variance due to the di↵erences in the datasets as shown in Figures 4.13 and 4.14. For the

40 cluster datasets, the speedups are on the order of 2-5x; the 160 cluster datasets present

much larger gains at 7x-15x. This is attributable to the impact of the number of input

features on the di↵erent SVM implementations. The CPU shows an average increase in

execution time of 4x when the clusters are increased, whereas the GPU shows an average

increase of 1.4x as shown in Table 4.15.
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Figure 4.13: Mean Training Times of SVMs for 40 Cluster Datasets

Table 4.15: Impact Ratios of Cluster Changes for Average SVM Training Times

Alg 0 1 3 4 7 9 10 Mean 90% C.I.

LH 2.92 5.69 4.57 3.99 3.83 3.64 4.01 4.09 0.63

GL 1.31 1.43 1.44 1.37 1.46 1.45 1.40 1.41 0.04
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Figure 4.14: Mean Training Times of SVMs for 160 Cluster Datasets

The testing times for the support vector machine implementations at the 40 cluster

level show marginal gains for the GPU implementation for four of the seven datasets; the

others execute more quickly on the CPU implementation. At the higher cluster level,

however, the GPU outperforms the CPU on all seven datasets. The mean testing times for

the SVM implementations for 40 and 160 cluster levels are given in Figures 4.15 and 4.16,

respectively. As with the training times, the increase in input features has a more

significant impact on the CPU than the GPU. This is as expected since the GPU can

increase its utilization when given more input features by launching more parallel thread

blocks. The relative impact of the cluster size on the mean testing times is given in Table

4.16.
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Figure 4.15: Mean Testing Times of SVMs for 40 Cluster Datasets
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Figure 4.16: Mean Testing Times of SVMs for 160 Cluster Datasets
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Table 4.16: Impact Ratios of Cluster Changes for Average SVM Testing Times

Alg 0 1 3 4 7 9 10 Mean 90% C.I.

CPU 2.39 5.72 4.59 3.80 3.39 3.12 3.24 3.75 0.81

GPU 1.25 1.49 1.52 1.46 1.49 1.43 1.50 1.45 0.07

Overall, as in Experiment 1, the GPU implementations show a performance gain over

the CPU implementations in the training phase for all datasets. The testing phase,

however, indicates that the low number of hidden neurons severely limits the potential

performance gains of the GPU ANN over the CPU ANN. The GPU SVMs performance

gain is limited by the number of input features as indicated by the di↵erence in scaling

between the CPU and GPU implementations when the input features are increased. These

results indicate that the GPU SVM is best utilized when a larger number of input features

is used.

4.2.3 Analysis of Ensemble Accuracy. This section evaluates the overall prediction

accuracies for the machine learning ensemble classifiers on the McPAD workload to

determine the most e↵ective ensemble configuration among those considered. The overall

accuracy for each ensemble configuration is compared. The di↵erences provide an

indication of the e↵ects of the number of clusters, the number of base classifiers, and the

combination method on the overall prediction accuracy of the ensemble. As with

Experiment 1, a non-parametric test is used to determine if there is a significant di↵erence

between the factor levels at the 0.1 significance level. The ensemble accuracies are

evaluated using Wilcoxson’s signed-rank test in R. Section 4.2.3.1 compares the

accuracies of the ensembles for each of the di↵erent machine learning algorithms. The

impact of changing the number of base classifiers used in the ensemble is examined in

Section 4.2.3.2. Section 4.2.3.3 discusses the e↵ects of the ensemble combination method
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on the overall accuracy. Lastly, Section 4.2.3.4 analyzes the di↵erences in accuracies

between the di↵erent cluster factor levels.

4.2.3.1 Impact of Machine Learning Algorithm on Accuracy. Due to the

nature of support vector machine classifiers, it is expected that the accuracy for the voting

ensembles be constant across the replications. The final classifier ensembles add the

variation of a randomly initialized artificial neural network to the final determination,

resulting in the potential for variation between replications. The CPU SVM ensembles

behave as expected. The voting ensembles show the same accuracy across all replications

for both cluster levels, while the classifier method shows variation. The GPU SVM,

however, does not behave as expected. An examination of the accuracies for the GPU

SVM ensembles shows an inconsistency in accuracies between the replications for all of

the 40 cluster and some of the 160 cluster factor levels. As this is not encountered in

Experiment 1, it is assumed that there is a rounding error in the implementation of the

GPU SVM, causing examples to be classified di↵erently from one run to the next for

specific datasets. A full examination of this issue is not within the scope of this research

and is left to future work. The accuracies for the GPU SVM voting ensembles are

provided in Appendix D.

An analysis of the di↵erences in accuracies between the CPU and GPU

implementations of each machine learning algorithm shows similar results as Experiment

1. The Wilcoxon tests indicate that there is no significant di↵erence between the CPU

(AC) and GPU (AG) artificial neural network implementations for any of the factor levels.

The CPU SVM (LH) ensembles show a significant di↵erence from all of the other

algorithms for each factor level. The GPU SVM (GL), however, shows no di↵erence

between it and the ANN ensembles at several factor levels. The factor levels that show no

di↵erence between the GPU SVM and CPU ANN also show no di↵erence between the

GPU SVM and GPU ANN for all of the three and five BC configurations. The seven BC
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configuration, however, only matches for half of the factor levels that show no di↵erence

between the GPU SVM and the CPU ANN. From the low p-values, it is possible that there

is a significant di↵erence between these classifiers that is undetected due to the low power

of the test with this number of replications. The R commands used to conduct the

Wilcoxon tests are included in Appendix C.

4.2.3.2 Impact of Adding Base Classifiers on Accuracy. An examination of

the ensemble accuracies shows that there is a significant impact for most of the factor

levels of the 40 cluster ensemble when the number of base classifiers is changed. The

three BC and five BC ensembles with the majority vote combination method show no

significant di↵erence in accuracy at the 0.10 significance level for the ANN ensembles.

Likewise, the five BC and seven BC ensembles using the final classifier method show no

significant di↵erence in accuracy for any of the algorithms. The rest of the configurations

do show a significant di↵erence at the 0.10 level. Similarly, the 160 cluster ensembles also

show a significant di↵erence for all of the factor levels except the five and seven BC final

classifier levels. The R commands used to conduct the Wilcoxon tests are included in

Appendix C.

At the 40 cluster level, the addition of base classifiers from three to five does not

significantly change the accuracy for the ANN voting ensemble and the increase to seven

base classifiers decreases the accuracy. As shown by the average accuracies of the voting

ensembles in Figure 4.17, the CPU support vector machine ensembles show a minimal

decrease between the three and five levels and an increase for the seven classifier level.

Like the ANN ensemble, the GPU SVM ensemble records a decrease for the seven base

classifier level.
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Figure 4.17: Average Accuracies for 40 Cluster Voting Ensembles

The addition of base classifiers to an ensemble increases the amount of information

used to make the final classification of the tra�c sample. As each base classifier uses a

di↵erent ⌫ dataset value, some will reach di↵erent determinations than others for the same

tra�c sample. As more incorrect base classifier votes are added, the correct votes are

overruled, resulting in a decrease in accuracy. An examination of the base classifier

accuracies indicates that the ANN and GPU SVM accuracies are lower for the two

additional datasets in the seven BC configuration than the CPU SVM, resulting in a

decrease in accuracy rather than an increase at that factor level.

All of the ensembles demonstrate higher accuracies for the final classifier

combination method at the five and seven BC levels as compared to the three classifier

level, but with no significant di↵erence between the five and seven levels as indicated by

the Wilcoxon tests. The average accuracies for each final classifier ensemble at the 40

cluster level are shown in Figure 4.18. The results for the 160 cluster ensembles are

similar and are included in Appendix D.
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Figure 4.18: Average Accuracies for 40 Cluster Final Classifier Ensembles

4.2.3.3 Impact of Ensemble Combination Method on Accuracy. The

accuracies for the majority vote ensembles and the final classifier ensembles are compared

to determine the impact of the combination method on the final accuracy. For the 40

cluster datasets, the Wilcoxon signed-rank test indicates that there is a significant

di↵erence between the voting ensemble and the final classifier ensemble for almost all of

the base classifier types. The CPU support vector machine reports the same accuracies for

the voting ensemble and final classifier ensemble at the three BC level for each replication.

As a result, the comparison is not conducted with R; it is treated as if there is no significant

di↵erence since all of the di↵erences in accuracy are zero. Additionally, the CPU support

vector machine BC ensemble shows no significant di↵erence at the seven BC level.

At the 160 cluster level, the Wilcoxon test indicates that there is a significant

di↵erence between the voting ensemble and the final classifier ensemble combination

methods for all of the classifier configurations at the seven base classifier level. The five

BC level shows no significant di↵erence for the the CPU SVM and the three BC level

shows no significant di↵erence for the GPU ANN and both of the SVMs. Due to the low
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p-values, it is possible that there is a significant di↵erence at these factor levels that is

undetected due to the low power of the test with this number of replications.

In general, the observed accuracies are higher for the classifier ensembles than the

voting ensembles. This increase in accuracy is due to the added flexibility of the neural

network classifier method over the majority voting method. Since the classifier determines

the weights of each base classifier’s inputs based on its accuracy in the training phase, it

can emphasize the more accurate base classifiers over the less accurate ones. In contrast,

the majority vote ensemble gives all base classifiers an equal weight in the final output

regardless of their historical accuracy. Each of the classifier configurations that shows a

statistically significant di↵erence also shows an increase in accuracy when the

combination method is changed from majority vote to final classifier as illustrated in

Figure 4.19.
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Figure 4.19: Average Accuracies for All 40 Cluster Ensembles

4.2.3.4 Impact of Cluster Size on Accuracy. The significance tests for the

di↵erences between the accuracies show a significant di↵erence between the 40 cluster
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and 160 cluster ensembles for the all of the factor levels. The di↵erences between the

cluster levels is expected as the payload processing and clustering method employed

results in a di↵erent representation of the underlying data for di↵erent numbers of

clusters. For the majority of the configurations, the 40 cluster ensembles perform better

than their 160 cluster equivalents. There is one exception, however. The CPU support

vector machine performs marginally better with the 160 cluster datasets than the 40 cluster

datasets for one factor level, the five base classifier majority voting ensemble. It shows an

average accuracy of 98.85% for the 40 cluster dataset and 98.86% for the 160 cluster

dataset. This indicates that better accuracy results may be attained by using di↵erent

combinations of cluster levels and algorithms in the same ensemble and is left to future

research.

Overall, the best performance for the 40 cluster dataset is observed at the five base

classifier level with the final classifier combination method. At this factor level, the GPU

SVM and ANN implementations are not significantly di↵erent as discussed in Section

4.2.3.1. In terms of overall accuracy, the CPU SVM performs the best; however, as in

Experiment 1, the practical di↵erences in accuracy are small. Figure 4.20 presents the

false positive and false negative rates for the five base classifier ensembles with the final

classifier combination method. The CPU support vector machine (LH) ensemble shows

the lowest false positive rate, but a higher false negative rate than the GPU SVM (GL)

ensemble. The GPU SVM shows the highest false positive rate, but the lowest false

negative rate. The false positive and false negative rates for the remaining factor levels are

included in Appendix D.
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Figure 4.20: False Positive and Negative Rates for 5 BC Final Classifier 40 Cluster
Ensembles

4.3 Analysis Highlights

The results from Experiments 1 and 2 provide an indication of the di↵erences in

execution time performance for machine learning-based intrusion detection systems when

executed on the CPU and GPU. Experiment 1 shows that the GPU implementation is less

a↵ected by increases in dataset size than the CPU implementation. It also provides an

indication of the impact of changing the support vector machine cost and gamma

parameters on the relative execution times of each implementation. The performance of

the CPU support vector machines indicate that LIBSVM performs 1.9-3.2x better with a

high cost parameter for the NSL-KDD dataset, while GTSVM performs 8-13x better in

the training stage with a lower cost parameter. The accuracies of the classifiers in

Experiment 1 indicate that the support vector machines are more accurate at classifying

the NSL-KDD dataset than the artificial neural networks, with accuracies near 99% and

97.5%, respectively. The low di↵erences in accuracies between the CPU high-c SVM and

GPU low-c SVM indicate that it is possible to take advantage of the speed di↵erences

a↵orded by the GPU with only a small impact on accuracy.
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Experiment 2 demonstrates the e↵ectiveness of utilizing supervised machine learning

techniques on network payload data processed using the McPAD 2⌫-gram technique. The

results of the execution time comparisons indicate that the performance of the GPU ANN

implementation is more highly dependent on the number of hidden neurons in the neural

network than the number of input features in the dataset. The GPU support vector

machine, however, shows an increase in relative performance when the number of input

features is increased. Unlike Experiment 1, the ANN accuracy performance is not

significantly di↵erent from the GPU SVM at the most accurate factor level; however, it is

still significantly slower in execution time. These results demonstrate that it is possible to

obtain comparable accuracies for 2⌫-gram payload data with a 2-15x increase in

performance using the GPU machine learning libraries.

4.4 Summary

This chapter presents and analyzes the results from two experiments. A statistical

analysis of the di↵erences in execution times and accuracies is performed for both

experiments. Finally, an overall analysis of the results is provided. The results show that

the GPU support vector machine implementation provides a 10-85x speedup over the

CPU implementation for the NSL-KDD dataset and a 2-15x speedup for the McPAD

dataset. The GPU artificial neural network implementation provides speedups of up to 29x

over the CPU ANN implementation. These results demonstrate that it is possible to take

advantage of the speedup provided by the GPU when classifying network tra�c.
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5 Conclusions

This chapter presents the conclusions drawn from the research. Section 5.1 compares

the results of the experiments with the research goals to determine if the objectives were

met. The impact of this research is presented in Section 5.2. Lastly, Section 5.3 presents

recommendations for future research.

The hypothesis of the first research goal is that support vector machines will be more

accurate at classifying anomalous network tra�c using the GPU than the artificial neural

networks. The second goal hypothesizes that the GPU implementation for the intrusion

detection system will be significantly faster than the CPU implementation. For goal three,

the hypothesis is that adding more base classifiers to the ensemble and using a final

classifier combination method instead of a simple majority vote will increase the accuracy

of the ensemble when classifying network payload data processed using the 2⌫-gram

technique from McPAD [PAF09].

5.1 Conclusions of Research

5.1.1 Goal 1: Determine the Relative Accuracy of the GPU Machine Learning

Anomaly Detection Algorithms. The first goal of this research is to determine whether

using Gaussian kernel support vector machines (SVMs) or back-propagation learning

artificial neural networks (ANNs) is the most e↵ective method for classifying anomalous

network tra�c on the GPU. The results of Experiment 1 indicate that the support vector

machines are more accurate for the NSL-KDD preprocessed tra�c data. The results of

Experiment 2 indicate that the most e↵ective GPU ANN and GPU SVM ensemble

configurations are not significantly di↵erent in accuracy.

5.1.2 Goal 2: Measure the Relative Performances of the CPU and GPU

Implementations of the Anomaly Detector. The second goal of this research is to evaluate
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the relative performance of the GPU anomaly detection method against the CPU

implementation for the same datasets. GNIDS is evaluated using the NSL-KDD datasets

and the McPAD processed datasets. The results of Experiment 1 indicate that the GPU

implementation is significantly less a↵ected by increases in dataset size than the CPU

implementation. Additionally, the GPU implementation is faster for both training and

testing on the NSL-KDD workloads. Experiment 2 shows that the performance gain of the

GPU ANN over the CPU ANN is highly dependent on the number of hidden neurons used

in the neural network. A performance gain is observed for the training phases, but the

testing phase is more severely impacted by the lack of hidden neurons, resulting in faster

classification using the CPU ANN. The training phases for the SVM classifier are faster

on GPU than the CPU for both cluster levels. The classification phase, however, only

shows a performance gain for the 160 cluster datasets, indicating the CPU SVM is more

heavily impacted by the change in input features than the GPU SVM.

5.1.3 Goal 3: Determine the Relative Accuracy of Varying Ensemble

Configurations. The third goal of this research is to explore the e↵ects of changing the

number of base classifiers and ensemble combination method on the overall accuracy of a

machine learning ensemble. GNIDS is used in an ensemble configuration with each of the

machine learning implementations and is tested with multiple ensemble configurations on

2⌫-gram processed datasets. The results indicate that there is only a marginal di↵erence in

accuracy between the best performing GPU ANN and GPU SVM configurations. The

overall best performing configuration is the five base classifier ensemble using the 40

cluster datasets. Of the machine learning algorithms, the CPU SVM performed the best at

this level; however, the GPU SVM shows comparable accuracies with only marginally

higher false positive rates and lower false negative rates.
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5.2 Impact of Research

This research explores the performance characteristics of network intrusion detection

using supervised machine learning on the GPU. It also demonstrates the feasibility of

using an ensemble of supervised machine learning classifiers to classify network tra�c

data processed using the 2⌫-gram feature clustering technique. It is shown that both GPU

artificial neural networks and GPU support vector machines can be e↵ectively used to

classify network payload data. This research provides an implementation of a flexible

classification tool for GPU-accelerated supervised machine learning ensembles. As a

result of using the GPU, GNIDS is less impacted by large datasets than a CPU-based

implementation and can be deployed to any machine with a compatible GPU or can be

executed using the included CPU implementation. It is easily expandable to support other

machine learning algorithms and ensemble combination methods.

5.3 Recommendations for Future Work

The following are recommended areas for future work and expansion of GNIDS:

• Migrate the machine learning algorithm implementations to OpenCL or AMP C++

to take advantage of hardware flexibility. OpenCL provides a parallel coding

standard similar to CUDA that has implementations for multi-core CPUs and both

NVIDIA and AMD graphics hardware [Khr12]. AMP C++ is a new API announced

by Microsoft that takes advantage of the GPU’s parallelism at the driver level,

allowing compatibility across hardware vendors [Mic12].

• Integrate the 2⌫-gram payload processing technique so that the system can process

its own packets for analysis rather than relying on a preprocessed dataset.

• Implement unsupervised machine learning techniques to provide the ability for the

detector method to be trained using unlabeled tra�c. It is suggested that one-class
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support vector machines be implemented along with self-organizing maps or some

other clustering technique.

• Implement alert generation and logging functionality.

• Evaluate performance impact of deploying GNIDS to monitor tra�c at the

individual network host level.

• Evaluate the impact of using a low-end GPU versus a high-end GPU on system

performance.

5.4 Summary

This research focuses on the implementation and evaluation of a graphics processing

unit accelerated network intrusion detection system (GNIDS) that uses the parallel nature

of the GPU to perform network anomaly detection using supervised machine learning

techniques. GNIDS is designed to support multiple machine learning classifiers in an

ensemble setup using two di↵erent ensemble combination methods, a majority vote and a

neural network classifier. Overall, results of this research indicate that it is possible to take

advantage of the performance increases a↵orded by the GPU in the area of supervised

machine learning intrusion detection.
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Appendix A: Supplemental Data for Experiment 1

A.1 R Script - Tukey Test for Experiment 1

# da ta e n t r y

t i m e s KDD = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\ k d d l o g s \\ Times . csv ” , h e a d e r=TRUE)

t i m e s KDD 10 41 = t i m e s KDD[ grep ( ” 10 ” , t i m e s KDD$ S i z e ) , ]

t i m e s KDD 20 41 = t i m e s KDD[ grep ( ” 20 ” , t i m e s KDD$ S i z e ) , ]

t i m e s KDD 30 41 = t i m e s KDD[ grep ( ” 30 ” , t i m e s KDD$ S i z e ) , ]

t i m e s KDD 41 = t i m e s KDD[ grep ( ” 41 ” , t i m e s KDD$ F e a t u r e s ) , ]

# d i f f e r e n c e o f Alg a t each S i z e f o r t r a i n i n i n g

y t r a i n KDD 10 41 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( Alg ) , t i m e s KDD 10 41) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n KDD 10 41

y t r a i n KDD 20 41 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( Alg ) , t i m e s KDD 20 41) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n KDD 20 41

y t r a i n KDD 30 41 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( Alg ) , t i m e s KDD 30 41) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n KDD 30 41

# d i f f e r e n c e o f Alg a t each S i z e f o r t e s t i n g

y t e s t KDD 10 41 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( Alg ) , t i m e s KDD 10 41) ) , con f . l e v e l = 0 . 9 0 )

y t e s t KDD 10 41

y t e s t KDD 20 41 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( Alg ) , t i m e s KDD 20 41) ) , con f . l e v e l = 0 . 9 0 )

y t e s t KDD 20 41

y t e s t KDD 30 41 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( Alg ) , t i m e s KDD 30 41) ) , con f . l e v e l = 0 . 9 0 )

y t e s t KDD 30 41

# i mp ac t on Alg o f S i z e f o r t r a i n

# i mp ac t on AC

y t r a i n KDD 41 AC = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”AC” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 AC

# i mp ac t on AG

y t r a i n KDD 41 AG = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”AG” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 AG

# i mp ac t o f GH

y t r a i n KDD 41 G1 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”G1” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 G1

# i mp ac t on LH

y t r a i n KDD 41 L1 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”L1” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 L1

# i mp ac t on GL

y t r a i n KDD 41 G2 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”G2” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 G2

# i mp ac t on LL

y t r a i n KDD 41 L2 = TukeyHSD ( aov ( lm ( T r a i n ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”L2” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n KDD 41 L2

# i mp ac t on Alg o f S i z e f o r t e s t

# i mp ac t on AC

y t e s t KDD 41 AC = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”AC” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t KDD 41 AC

# i mp ac t on AG

y t e s t KDD 41 AG = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”AG” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t KDD 41 AG

# i mp ac t o f GH

y t e s t KDD 41 G1 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”G1” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )
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y t e s t KDD 41 G1

# i mp ac t on LH

y t e s t KDD 41 L1 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”L1” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t KDD 41 L1

# i mp ac t on GL

y t e s t KDD 41 G2 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”G2” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t KDD 41 G2

# i mp ac t on LL

y t e s t KDD 41 L2 = TukeyHSD ( aov ( lm ( T e s t ˜ f a c t o r ( S i z e ) , t i m e s KDD 41[ grep ( ”L2” , t i m e s KDD 41$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t KDD 41 L2

A.2 R Script - Wilcoxon Test Experiment 1

l i b r a r y ( c o i n )

s c o r e s KDD = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\ k d d l o g s \\ S c o r e s . c sv ” , h e a d e r=TRUE)

ac KDD df= s c o r e s KDD[ grep ( ”AC” , s c o r e s KDD$Alg ) , ]

ag KDD df= s c o r e s KDD[ grep ( ”AG” , s c o r e s KDD$Alg ) , ]

g1 KDD df= s c o r e s KDD[ grep ( ”G1” , s c o r e s KDD$Alg ) , ]

l 1 KDD df= s c o r e s KDD[ grep ( ”L1” , s c o r e s KDD$Alg ) , ]

g2 KDD df= s c o r e s KDD[ grep ( ”G2” , s c o r e s KDD$Alg ) , ]

l 2 KDD df= s c o r e s KDD[ grep ( ”L2” , s c o r e s KDD$Alg ) , ]

#Group by Alg and S i z e L e v e l .

ac 10 = c ( ac KDD df [ grep ( ” 10 ” , ac KDD df $ S i z e ) , ] $ Score )

ac 20 = c ( ac KDD df [ grep ( ” 20 ” , ac KDD df $ S i z e ) , ] $ Score )

ac 30 = c ( ac KDD df [ grep ( ” 30 ” , ac KDD df $ S i z e ) , ] $ Score )

ag 10 = c ( ag KDD df [ grep ( ” 10 ” , ag KDD df $ S i z e ) , ] $ Score )

ag 20 = c ( ag KDD df [ grep ( ” 20 ” , ag KDD df $ S i z e ) , ] $ Score )

ag 30 = c ( ag KDD df [ grep ( ” 30 ” , ag KDD df $ S i z e ) , ] $ Score )

g1 10 = c ( g1 KDD df [ grep ( ” 10 ” , g1 KDD df $ S i z e ) , ] $ Score )

g1 20 = c ( g1 KDD df [ grep ( ” 20 ” , g1 KDD df $ S i z e ) , ] $ Score )

g1 30 = c ( g1 KDD df [ grep ( ” 30 ” , g1 KDD df $ S i z e ) , ] $ Score )

l 1 10 = c ( l 1 KDD df [ grep ( ” 10 ” , l 1 KDD df $ S i z e ) , ] $ Score )

l 1 20 = c ( l 1 KDD df [ grep ( ” 20 ” , l 1 KDD df $ S i z e ) , ] $ Score )

l 1 30 = c ( l 1 KDD df [ grep ( ” 30 ” , l 1 KDD df $ S i z e ) , ] $ Score )

g2 10 = c ( g2 KDD df [ grep ( ” 10 ” , g2 KDD df $ S i z e ) , ] $ Score )

g2 20 = c ( g2 KDD df [ grep ( ” 20 ” , g2 KDD df $ S i z e ) , ] $ Score )

g2 30 = c ( g2 KDD df [ grep ( ” 30 ” , g2 KDD df $ S i z e ) , ] $ Score )

l 2 10 = c ( l 2 KDD df [ grep ( ” 10 ” , l 2 KDD df $ S i z e ) , ] $ Score )

l 2 20 = c ( l 2 KDD df [ grep ( ” 20 ” , l 2 KDD df $ S i z e ) , ] $ Score )

l 2 30 = c ( l 2 KDD df [ grep ( ” 30 ” , l 2 KDD df $ S i z e ) , ] $ Score )

#����������� d i f f e r e n c e i n A l g o r i t h m by S i z e �����������������

# d i f f a t 10

p ALG 10=c (

p v a l u e ( w i l c o x s i g n t e s t ( ag 10 ˜ ac 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 10 ˜ ac 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 10 ˜ ac 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 10 ˜ ac 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 10 ˜ ac 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 10 ˜ ag 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 10 ˜ ag 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 10 ˜ ag 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 10 ˜ ag 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 10 ˜ g1 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 10 ˜ g1 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,
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p v a l u e ( w i l c o x s i g n t e s t ( l 2 10 ˜ g1 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 10 ˜ l 1 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 10 ˜ l 1 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 10 ˜ g2 10 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) )

w r i t e ( p ALG 10 , ” ” , 1 )

# d i f f a t 20

p ALG 20=c (

p v a l u e ( w i l c o x s i g n t e s t ( ag 20 ˜ ac 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 20 ˜ ac 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 20 ˜ ac 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 20 ˜ ac 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 20 ˜ ac 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 20 ˜ ag 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 20 ˜ ag 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 20 ˜ ag 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 20 ˜ ag 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 20 ˜ g1 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 20 ˜ g1 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 20 ˜ g1 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 20 ˜ l 1 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 20 ˜ l 1 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 20 ˜ g2 20 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) )

w r i t e ( p ALG 20 , ” ” , 1 )

# d i f f a t 30

p ALG 30=c (

p v a l u e ( w i l c o x s i g n t e s t ( ag 30 ˜ ac 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 30 ˜ ac 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 30 ˜ ac 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 30 ˜ ac 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 30 ˜ ac 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g1 30 ˜ ag 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 30 ˜ ag 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 30 ˜ ag 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 30 ˜ ag 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 1 30 ˜ g1 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 30 ˜ g1 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 30 ˜ g1 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( g2 30 ˜ l 1 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 30 ˜ l 1 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) ,

p v a l u e ( w i l c o x s i g n t e s t ( l 2 30 ˜ g2 30 , d i s t r i b u t i o n=” e x a c t ” , z e r o . method=” P r a t t ” ) ) )

w r i t e ( p ALG 30 , ” ” , 1 )
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A.3 Workload Characteristics

Table A.1: Tra�c Distribution for NSL-KDD 20% Subset

Tra�c Class Samples % Total Samples

Normal Tra�c 13468 53.459%

DoS Tra�c 9185 36.459%

User to Root Tra�c 10 0.040%

Remote to Local Tra�c 199 0.790%

Probe Tra�c 2331 9.253%

Table A.2: Tra�c Distribution for NSL-KDD 30% Subset

Tra�c Class Samples % Total Samples

Normal Tra�c 20202 53.460%

DoS Tra�c 13778 36.460%

User to Root Tra�c 15 0.040%

Remote to Local Tra�c 298 0.789%

Probe Tra�c 3496 9.251%
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Appendix B: Experimental Data for Experiment 1

B.1 Training Times

Table B.1: Training Times (s) for CPU ANN

Run 10 20 30

1 260.9045 524.4233 800.6278

2 261.3478 526.2334 799.7555

3 260.6942 525.1440 800.2352

4 260.9887 525.3850 800.2097

5 260.1812 525.5359 799.4652

Table B.2: Training Times (s) for GPU ANN

Run 10 20 30

1 9.4720 18.4313 27.4207

2 9.4559 18.4283 27.4257

3 9.4661 18.4274 27.4179

4 9.4648 18.4296 27.4277

5 9.4701 18.4299 27.4268
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Table B.3: Training Times (s) for GPU SVM-High

Run 10 20 30

1 4.2367 7.5584 15.4567

2 4.3578 7.8402 14.9039

3 4.5921 7.5567 15.3311

4 4.1744 7.5516 15.7191

5 4.2792 7.8409 15.0665

Table B.4: Training Times (s) for CPU SVM-High

Run 10 20 30

1 5.2349 27.9568 95.0705

2 5.2200 28.1045 95.4993

3 5.2481 28.3211 95.5483

4 5.2629 28.1644 96.4790

5 5.2304 28.3090 96.5413

Table B.5: Training Times (s) for GPU SVM-Low

Run 10 20 30

1 0.4988 0.7102 1.1123

2 0.4850 0.7115 1.1737

3 0.4864 0.7339 1.0890

4 0.4977 0.7146 1.1063

5 0.4831 0.7525 1.1429
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Table B.6: Training Times (s) for CPU SVM-Low

Run 10 20 30

1 11.9461 90.6718 187.1990

2 11.9984 90.6824 187.9231

3 12.0361 90.0523 190.2981

4 12.0703 90.0338 187.0447

5 12.0157 90.2141 187.9421

B.2 Testing Times

Table B.7: Testing Times (ms) for CPU ANN

Run 10 20 30

1 19.1009 38.0686 57.0920

2 19.1978 38.2302 57.0863

3 19.1159 38.2076 56.7110

4 19.1040 38.0241 56.8088

5 19.1337 37.8701 56.8083

Table B.8: Testing Times (ms) for GPU ANN

Run 10 20 30

1 7.7418 10.2129 12.6419

2 7.7787 10.2521 12.5407

3 7.7813 10.2209 12.6778

4 7.6795 10.4127 12.5108

5 7.8517 10.1542 12.4317
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Table B.9: Testing Times (ms) for GPU SVM-High

Run 10 20 30

1 41.5133 72.6751 99.4987

2 41.7179 71.2621 99.4714

3 44.0194 73.0409 100.6619

4 40.7030 71.8097 101.2230

5 41.1058 72.8212 100.9495

Table B.10: Testing Times (ms) for CPU SVM-High

Run 10 20 30

1 336.9118 957.5062 1790.9575

2 336.4334 953.7136 1803.7802

3 335.8057 967.9052 1801.4094

4 335.9800 953.3447 1810.2800

5 335.8952 959.2463 1803.1212

Table B.11: Testing Times (ms) for GPU SVM-Low

Run 10 20 30

1 43.3857 74.0620 106.2155

2 43.5041 74.5227 105.5904

3 43.2079 74.4842 103.4442

4 44.0608 73.6946 106.4497

5 42.7844 74.8246 105.4607
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Table B.12: Testing Times (ms) for CPU SVM-Low

Run 10 20 30

1 649.3035 2218.0776 4895.9872

2 649.3771 2231.8417 4868.2795

3 648.6016 2212.7901 4892.4358

4 648.7443 2221.0593 4856.2410

5 649.2062 2211.6358 4835.3543

B.3 Accuracies

Table B.13: Accuracies for CPU ANN

CPU ANN 10 20 30

1 97.682 97.730 97.796

2 97.682 97.741 97.761

3 97.666 97.757 97.812

4 97.650 97.686 97.716

5 97.825 97.690 97.804

Table B.14: Accuracies for GPU ANN

GPU ANN 10 20 30

1 97.634 97.741 97.777

2 97.690 97.678 97.806

3 97.713 97.797 97.790

4 97.809 97.698 97.785

5 97.793 97.606 97.846
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Table B.15: Accuracies for GPU SVM-H

GPU SVM-H 10 20 30

1 99.349 99.492 99.540

2 99.349 99.492 99.540

3 99.349 99.492 99.540

4 99.349 99.492 99.540

5 99.349 99.492 99.540

Table B.16: Accuracies for CPU SVM-H

CPU SVM-H 10 20 30

1 99.222 99.476 99.492

2 99.222 99.476 99.492

3 99.222 99.476 99.492

4 99.222 99.476 99.492

5 99.222 99.476 99.492

Table B.17: Accuracies for GPU SVM-L

GPU SVM-L 10 20 30

1 99.031 99.115 99.309

2 99.031 99.115 99.309

3 99.031 99.115 99.309

4 99.031 99.115 99.309

5 99.031 99.115 99.309
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Table B.18: Accuracies for CPU SVM-L

CPU SVM-L 10 20 30

1 98.388 98.369 98.738

2 98.388 98.369 98.738

3 98.388 98.369 98.738

4 98.388 98.369 98.738

5 98.388 98.369 98.738

B.4 False Positive Rates

Table B.19: False Positive Rates for CPU ANN

CPU ANN 10 20 30

1 0.83% 0.83% 0.80%

2 0.99% 0.79% 0.83%

3 1.05% 0.82% 0.89%

4 1.05% 0.82% 0.89%

5 0.85% 0.84% 0.92%

Table B.20: False Positive Rates for GPU ANN

GPU ANN 10 20 30

1 0.82% 0.82% 0.78%

2 0.85% 0.82% 0.87%

3 0.84% 0.67% 0.77%

4 0.84% 0.67% 0.77%

5 0.87% 0.83% 0.87%
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Table B.21: False Positive Rates for GPU SVM-High

GPU SVM-H 10 20 30

1 0.58% 0.40% 0.38%

2 0.58% 0.40% 0.38%

3 0.58% 0.40% 0.38%

4 0.58% 0.40% 0.38%

5 0.58% 0.40% 0.38%

Table B.22: False Positive Rates for CPU SVM-High

CPU SVM-H 10 20 30

1 0.83% 0.47% 0.51%

2 0.83% 0.47% 0.51%

3 0.83% 0.47% 0.51%

4 0.83% 0.47% 0.51%

5 0.83% 0.47% 0.51%

Table B.23: False Positive Rates for GPU SVM-Low

GPU SVM-L 10 20 30

1 0.62% 0.50% 0.44%

2 0.62% 0.50% 0.44%

3 0.62% 0.50% 0.44%

4 0.62% 0.50% 0.44%

5 0.62% 0.50% 0.44%
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Table B.24: False Positive Rates for CPU SVM-Low

CPU SVM-L 10 20 30

1 0.52% 0.40% 0.37%

2 0.52% 0.40% 0.37%

3 0.52% 0.40% 0.37%

4 0.52% 0.40% 0.37%

5 0.52% 0.40% 0.37%

B.5 False Negative Rates

Table B.25: False Negative Rates for CPU ANN

CPU ANN 10 20 30

1 4.04% 3.92% 3.81%

2 3.97% 4.03% 3.76%

3 3.88% 3.91% 3.75%

4 3.84% 4.04% 3.88%

5 3.71% 4.00% 3.66%

Table B.26: False Negative Rates for GPU ANN

GPU ANN 10 20 30

1 4.15% 3.90% 3.87%

2 4.03% 4.02% 3.66%

3 3.94% 3.80% 3.75%

4 3.74% 4.18% 3.88%

5 3.75% 4.19% 3.63%
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Table B.27: False Negative Rates for GPU SVM-High

GPU SVM-H 10 20 30

1 0.74% 0.63% 0.56%

2 0.74% 0.63% 0.56%

3 0.74% 0.63% 0.56%

4 0.74% 0.63% 0.56%

5 0.74% 0.63% 0.56%

Table B.28: False Negative Rates for CPU SVM-High

CPU SVM-H 10 20 30

1 0.72% 0.59% 0.50%

2 0.72% 0.59% 0.50%

3 0.72% 0.59% 0.50%

4 0.72% 0.59% 0.50%

5 0.72% 0.59% 0.50%

Table B.29: False Negative Rates for GPU SVM-Low

GPU SVM-L 10 20 30

1 1.37% 1.33% 0.99%

2 1.37% 1.33% 0.99%

3 1.37% 1.33% 0.99%

4 1.37% 1.33% 0.99%

5 1.37% 1.33% 0.99%
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Table B.30: False Negative Rates for CPU SVM-Low

CPU SVM-L 10 20 30

1 2.88% 3.05% 2.29%

2 2.88% 3.05% 2.29%

3 2.88% 3.05% 2.29%

4 2.88% 3.05% 2.29%

5 2.88% 3.05% 2.29%
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Appendix C: Supplemental Data for Experiment 2

C.1 R Script - Tukey Test for Experiment 2

# g e t da ta from f i l e s

t i m e s 40 = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\McPadLogs \\Combined \\40 Time . csv ” , h e a d e r=TRUE)

t i m e s 160 = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\McPadLogs \\Combined \\160 Time . csv ” , h e a d e r=TRUE)

# s e p a r a t e by d a t a s e t

t i m e s 40 0 = t i m e s 40[ grep ( ” ˆ0 $ ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 1 = t i m e s 40[ grep ( ” ˆ1 $ ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 3 = t i m e s 40[ grep ( ” 3 ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 5 = t i m e s 40[ grep ( ” 5 ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 7 = t i m e s 40[ grep ( ” 7 ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 9 = t i m e s 40[ grep ( ” 9 ” , t i m e s 40$ D a t a s e t ) , ]

t i m e s 40 10 = t i m e s 40[ grep ( ” ˆ10 $ ” , t i m e s 40$ D a t a s e t ) , ]

# s e p a r a t e by d a t a s e t

t i m e s 160 0 = t i m e s 160[ grep ( ” ˆ0 $ ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 1 = t i m e s 160[ grep ( ” ˆ1 $ ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 3 = t i m e s 160[ grep ( ” 3 ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 5 = t i m e s 160[ grep ( ” 5 ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 7 = t i m e s 160[ grep ( ” 7 ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 9 = t i m e s 160[ grep ( ” 9 ” , t i m e s 160 $ D a t a s e t ) , ]

t i m e s 160 10 = t i m e s 160[ grep ( ” ˆ10 $ ” , t i m e s 160$ D a t a s e t ) , ]

#�����������������D i f f be tween Alg f o r each d a t a s e t

# d i f f be tween a l g s a t 40 c l by d a t a s e t f o r t r a i n i n g

y t r a i n 40 0=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 0) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 0

y t r a i n 40 1=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 1) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 1

y t r a i n 40 3=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 3) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 3

y t r a i n 40 5=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 5) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 5

y t r a i n 40 7=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 7) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 7

y t r a i n 40 9=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 9) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n 40 9

y t r a i n 40 10=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 40 10) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n 40 10

# d i f f be tween a l g s a t 40 c l by d a t a s e t f o r t e s t i n g

y t e s t 40 0=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 0) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 0

y t e s t 40 1=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 1) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 1

y t e s t 40 3=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 3) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 3

y t e s t 40 5=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 5) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 5

y t e s t 40 7=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 7) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 7

y t e s t 40 9=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 9) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 40 9
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y t e s t 40 10=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 40 10) ) , con f . l e v e l = 0 . 9 0 )

y t e s t 40 10

# d i f f be tween a l g s a t 160 c l by d a t a s e t f o r t r a i n i n g

y t r a i n 160 0=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 0) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 0

y t r a i n 160 1=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 1) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 1

y t r a i n 160 3=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 3) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 3

y t r a i n 160 5=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 5) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 5

y t r a i n 160 7=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 7) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 7

y t r a i n 160 9=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 9) ) , c o n f . l e v e l = 0 . 9 0 )

y t r a i n 160 9

y t r a i n 160 10=TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( Alg ) , t i m e s 160 10) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n 160 10

# d i f f be tween a l g s a t 160 c l by d a t a s e t f o r t e s t i n g

y t e s t 160 0=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 0) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 0

y t e s t 160 1=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 1) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 1

y t e s t 160 3=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 3) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 3

y t e s t 160 5=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 5) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 5

y t e s t 160 7=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 7) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 7

y t e s t 160 9=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 9) ) , c o n f . l e v e l = 0 . 9 0 )

y t e s t 160 9

y t e s t 160 10=TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( Alg ) , t i m e s 160 10) ) , con f . l e v e l = 0 . 9 0 )

y t e s t 160 10

#���������������� d i f f s o f d a t a s e t by ALG and CL�������������������

y t r a i n 40 AC = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”AC” , t i m e s 40$ Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 40 AC

y t r a i n 40 AG = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”AG” , t i m e s 40$ Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 40 AG

y t r a i n 40 LH = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”LH” , t i m e s 40$ Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 40 LH

y t r a i n 40 GL = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”GL” , t i m e s 40$ Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 40 GL

y t e s t 40 AC = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”AC” , t i m e s 40$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 40 AC

y t e s t 40 AG = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”AG” , t i m e s 40$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 40 AG

y t e s t 40 LH = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”LH” , t i m e s 40$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 40 LH

y t e s t 40 GL = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 40[ grep ( ”GL” , t i m e s 40$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 40 GL

# d i f f o f d a t a s e t f o r 160

y t r a i n 160 AC = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”AC” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 160 AC

y t r a i n 160 AG = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”AG” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 160 AG
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y t r a i n 160 LH = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”LH” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 160 LH

y t r a i n 160 GL = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”GL” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t r a i n 160 GL

y t e s t 160 AC = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”AC” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 160 AC

y t e s t 160 AG = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”AG” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 160 AG

y t e s t 160 LH = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”LH” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 160 LH

y t e s t 160 GL = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( D a t a s e t ) , t i m e s 160[ grep ( ”GL” , t i m e s 160$Alg ) , ] ) ) , co n f . l e v e l = 0 . 9 0 )

y t e s t 160 GL

#�����������������C l u s t e r comparison �����������������

# d i f f f o r AC

x t r a i n CL AC 0=matrix ( c (

t i m e s 40 0[ grep ( ”AC” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”AC” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”AC” , t i m e s 40 0$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 0[ grep ( ”AC” , t i m e s 160 0$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 0 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 0

x t r a i n CL AC 1=matrix ( c (

t i m e s 40 1[ grep ( ”AC” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”AC” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”AC” , t i m e s 40 1$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 1[ grep ( ”AC” , t i m e s 160 1$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 1 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 1

x t r a i n CL AC 3=matrix ( c (

t i m e s 40 3[ grep ( ”AC” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”AC” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”AC” , t i m e s 40 3$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 3[ grep ( ”AC” , t i m e s 160 3$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 3 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 3

x t r a i n CL AC 5=matrix ( c (

t i m e s 40 5[ grep ( ”AC” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”AC” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”AC” , t i m e s 40 5$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 5[ grep ( ”AC” , t i m e s 160 5$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 5 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 5

x t r a i n CL AC 7=matrix ( c (

t i m e s 40 7[ grep ( ”AC” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”AC” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”AC” , t i m e s 40 7$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 7[ grep ( ”AC” , t i m e s 160 7$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 7 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 7
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x t r a i n CL AC 9=matrix ( c (

t i m e s 40 9[ grep ( ”AC” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”AC” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”AC” , t i m e s 40 9$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 9[ grep ( ”AC” , t i m e s 160 9$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 9 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 9

x t r a i n CL AC 10=matrix ( c (

t i m e s 40 10[ grep ( ”AC” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”AC” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”AC” , t i m e s 40 10$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 10[ grep ( ”AC” , t i m e s 160 10$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AC 10 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AC 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n CL AC 10

# d i f f i n t r a i n by c l f o r AG

x t r a i n CL AG 0=matrix ( c (

t i m e s 40 0[ grep ( ”AG” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”AG” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”AG” , t i m e s 40 0$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 0[ grep ( ”AG” , t i m e s 160 0$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 0 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 0

x t r a i n CL AG 1=matrix ( c (

t i m e s 40 1[ grep ( ”AG” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”AG” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”AG” , t i m e s 40 1$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 1[ grep ( ”AG” , t i m e s 160 1$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 1 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 1

x t r a i n CL AG 3=matrix ( c (

t i m e s 40 3[ grep ( ”AG” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”AG” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”AG” , t i m e s 40 3$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 3[ grep ( ”AG” , t i m e s 160 3$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 3 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 3

x t r a i n CL AG 5=matrix ( c (

t i m e s 40 5[ grep ( ”AG” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”AG” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”AG” , t i m e s 40 5$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 5[ grep ( ”AG” , t i m e s 160 5$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 5 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 5

x t r a i n CL AG 7=matrix ( c (

t i m e s 40 7[ grep ( ”AG” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”AG” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”AG” , t i m e s 40 7$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 7[ grep ( ”AG” , t i m e s 160 7$Alg ) , ] $ T r a i n . s . ) ,
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nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 7 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 7

x t r a i n CL AG 9=matrix ( c (

t i m e s 40 9[ grep ( ”AG” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”AG” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”AG” , t i m e s 40 9$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 9[ grep ( ”AG” , t i m e s 160 9$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 9 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 9

x t r a i n CL AG 10=matrix ( c (

t i m e s 40 10[ grep ( ”AG” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”AG” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”AG” , t i m e s 40 10$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 10[ grep ( ”AG” , t i m e s 160 10$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL AG 10 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL AG 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n CL AG 10

#������� d i f f i n LH�������

x t r a i n CL LH 0=matrix ( c (

t i m e s 40 0[ grep ( ”LH” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”LH” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”LH” , t i m e s 40 0$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 0[ grep ( ”LH” , t i m e s 160 0$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 0 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 0

x t r a i n CL LH 1=matrix ( c (

t i m e s 40 1[ grep ( ”LH” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”LH” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”LH” , t i m e s 40 1$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 1[ grep ( ”LH” , t i m e s 160 1$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 1 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 1

x t r a i n CL LH 3=matrix ( c (

t i m e s 40 3[ grep ( ”LH” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”LH” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”LH” , t i m e s 40 3$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 3[ grep ( ”LH” , t i m e s 160 3$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 3 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 3

x t r a i n CL LH 5=matrix ( c (

t i m e s 40 5[ grep ( ”LH” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”LH” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”LH” , t i m e s 40 5$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 5[ grep ( ”LH” , t i m e s 160 5$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 5 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 5

x t r a i n CL LH 7=matrix ( c (

t i m e s 40 7[ grep ( ”LH” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,
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t i m e s 160 7[ grep ( ”LH” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”LH” , t i m e s 40 7$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 7[ grep ( ”LH” , t i m e s 160 7$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 7 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 7

x t r a i n CL LH 9=matrix ( c (

t i m e s 40 9[ grep ( ”LH” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”LH” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”LH” , t i m e s 40 9$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 9[ grep ( ”LH” , t i m e s 160 9$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 9 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 9

x t r a i n CL LH 10=matrix ( c (

t i m e s 40 10[ grep ( ”LH” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”LH” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”LH” , t i m e s 40 10$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 10[ grep ( ”LH” , t i m e s 160 10$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL LH 10 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL LH 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n CL LH 10

#����� d i f f o f GL��=���

x t r a i n CL GL 0=matrix ( c (

t i m e s 40 0[ grep ( ”GL” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”GL” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”GL” , t i m e s 40 0$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 0[ grep ( ”GL” , t i m e s 160 0$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 0 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 0

x t r a i n CL GL 1=matrix ( c (

t i m e s 40 1[ grep ( ”GL” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”GL” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”GL” , t i m e s 40 1$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 1[ grep ( ”GL” , t i m e s 160 1$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 1 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 1

x t r a i n CL GL 3=matrix ( c (

t i m e s 40 3[ grep ( ”GL” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”GL” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”GL” , t i m e s 40 3$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 3[ grep ( ”GL” , t i m e s 160 3$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 3 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 3

x t r a i n CL GL 5=matrix ( c (

t i m e s 40 5[ grep ( ”GL” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”GL” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”GL” , t i m e s 40 5$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 5[ grep ( ”GL” , t i m e s 160 5$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 5 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 5) ) ) , c on f . l e v e l = 0 . 9 0 )
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y t r a i n CL GL 5

x t r a i n CL GL 7=matrix ( c (

t i m e s 40 7[ grep ( ”GL” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”GL” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”GL” , t i m e s 40 7$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 7[ grep ( ”GL” , t i m e s 160 7$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 7 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 7

x t r a i n CL GL 9=matrix ( c (

t i m e s 40 9[ grep ( ”GL” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”GL” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”GL” , t i m e s 40 9$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 9[ grep ( ”GL” , t i m e s 160 9$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 9 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 9

x t r a i n CL GL 10=matrix ( c (

t i m e s 40 10[ grep ( ”GL” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”GL” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”GL” , t i m e s 40 10$Alg ) , ] $ T r a i n . s . ,

t i m e s 160 10[ grep ( ”GL” , t i m e s 160 10$Alg ) , ] $ T r a i n . s . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T r a i n . s . ” ) ) )

y t r a i n CL GL 10 = TukeyHSD ( aov ( lm ( T r a i n . s . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t r a i n CL GL 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t r a i n CL GL 10

#��������������������������������T e s t t i m e s d i f f due t o CL by ALG and D a t a s e t

x t e s t CL AC 0=matrix ( c (

t i m e s 40 0[ grep ( ”AC” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”AC” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”AC” , t i m e s 40 0$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 0[ grep ( ”AC” , t i m e s 160 0$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 0 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 0

x t e s t CL AC 1=matrix ( c (

t i m e s 40 1[ grep ( ”AC” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”AC” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”AC” , t i m e s 40 1$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 1[ grep ( ”AC” , t i m e s 160 1$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 1 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 1

x t e s t CL AC 3=matrix ( c (

t i m e s 40 3[ grep ( ”AC” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”AC” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”AC” , t i m e s 40 3$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 3[ grep ( ”AC” , t i m e s 160 3$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 3 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 3

x t e s t CL AC 5=matrix ( c (

t i m e s 40 5[ grep ( ”AC” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”AC” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”AC” , t i m e s 40 5$Alg ) , ] $ T e s t . ms . ,
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t i m e s 160 5[ grep ( ”AC” , t i m e s 160 5$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 5 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 5

x t e s t CL AC 7=matrix ( c (

t i m e s 40 7[ grep ( ”AC” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”AC” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”AC” , t i m e s 40 7$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 7[ grep ( ”AC” , t i m e s 160 7$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 7 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 7

x t e s t CL AC 9=matrix ( c (

t i m e s 40 9[ grep ( ”AC” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”AC” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”AC” , t i m e s 40 9$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 9[ grep ( ”AC” , t i m e s 160 9$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 9 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AC 9

x t e s t CL AC 10=matrix ( c (

t i m e s 40 10[ grep ( ”AC” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”AC” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”AC” , t i m e s 40 10$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 10[ grep ( ”AC” , t i m e s 160 10$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AC 10 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AC 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t e s t CL AC 10

# d i f f i n t e s t by c l f o r AG

x t e s t CL AG 0=matrix ( c (

t i m e s 40 0[ grep ( ”AG” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”AG” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”AG” , t i m e s 40 0$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 0[ grep ( ”AG” , t i m e s 160 0$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 0 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 0

x t e s t CL AG 1=matrix ( c (

t i m e s 40 1[ grep ( ”AG” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”AG” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”AG” , t i m e s 40 1$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 1[ grep ( ”AG” , t i m e s 160 1$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 1 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 1

x t e s t CL AG 3=matrix ( c (

t i m e s 40 3[ grep ( ”AG” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”AG” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”AG” , t i m e s 40 3$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 3[ grep ( ”AG” , t i m e s 160 3$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 3 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 3

x t e s t CL AG 5=matrix ( c (
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t i m e s 40 5[ grep ( ”AG” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”AG” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”AG” , t i m e s 40 5$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 5[ grep ( ”AG” , t i m e s 160 5$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 5 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 5

x t e s t CL AG 7=matrix ( c (

t i m e s 40 7[ grep ( ”AG” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”AG” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”AG” , t i m e s 40 7$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 7[ grep ( ”AG” , t i m e s 160 7$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 7 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 7

x t e s t CL AG 9=matrix ( c (

t i m e s 40 9[ grep ( ”AG” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”AG” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”AG” , t i m e s 40 9$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 9[ grep ( ”AG” , t i m e s 160 9$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 9 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL AG 9

x t e s t CL AG 10=matrix ( c (

t i m e s 40 10[ grep ( ”AG” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”AG” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”AG” , t i m e s 40 10$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 10[ grep ( ”AG” , t i m e s 160 10$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL AG 10 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL AG 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t e s t CL AG 10

# d i f f i n LH

x t e s t CL LH 0=matrix ( c (

t i m e s 40 0[ grep ( ”LH” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”LH” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”LH” , t i m e s 40 0$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 0[ grep ( ”LH” , t i m e s 160 0$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 0 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 0

x t e s t CL LH 1=matrix ( c (

t i m e s 40 1[ grep ( ”LH” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”LH” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”LH” , t i m e s 40 1$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 1[ grep ( ”LH” , t i m e s 160 1$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 1 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 1

x t e s t CL LH 3=matrix ( c (

t i m e s 40 3[ grep ( ”LH” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”LH” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 3[ grep ( ”LH” , t i m e s 40 3$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 3[ grep ( ”LH” , t i m e s 160 3$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )
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y t e s t CL LH 3 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 3

x t e s t CL LH 5=matrix ( c (

t i m e s 40 5[ grep ( ”LH” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”LH” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”LH” , t i m e s 40 5$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 5[ grep ( ”LH” , t i m e s 160 5$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 5 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 5

x t e s t CL LH 7=matrix ( c (

t i m e s 40 7[ grep ( ”LH” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”LH” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”LH” , t i m e s 40 7$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 7[ grep ( ”LH” , t i m e s 160 7$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 7 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 7

x t e s t CL LH 9=matrix ( c (

t i m e s 40 9[ grep ( ”LH” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”LH” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”LH” , t i m e s 40 9$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 9[ grep ( ”LH” , t i m e s 160 9$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 9 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL LH 9

x t e s t CL LH 10=matrix ( c (

t i m e s 40 10[ grep ( ”LH” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”LH” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”LH” , t i m e s 40 10$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 10[ grep ( ”LH” , t i m e s 160 10$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL LH 10 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL LH 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t e s t CL LH 10

# d i f f o f GL

x t e s t CL GL 0=matrix ( c (

t i m e s 40 0[ grep ( ”GL” , t i m e s 40 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 0[ grep ( ”GL” , t i m e s 160 0$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 0[ grep ( ”GL” , t i m e s 40 0$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 0[ grep ( ”GL” , t i m e s 160 0$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 0 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 0) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 0

x t e s t CL GL 1=matrix ( c (

t i m e s 40 1[ grep ( ”GL” , t i m e s 40 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 1[ grep ( ”GL” , t i m e s 160 1$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 1[ grep ( ”GL” , t i m e s 40 1$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 1[ grep ( ”GL” , t i m e s 160 1$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 1 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 1) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 1

x t e s t CL GL 3=matrix ( c (

t i m e s 40 3[ grep ( ”GL” , t i m e s 40 3$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 3[ grep ( ”GL” , t i m e s 160 3$Alg ) , ] $ C l u s t e r s ,
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t i m e s 40 3[ grep ( ”GL” , t i m e s 40 3$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 3[ grep ( ”GL” , t i m e s 160 3$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 3 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 3) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 3

x t e s t CL GL 5=matrix ( c (

t i m e s 40 5[ grep ( ”GL” , t i m e s 40 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 5[ grep ( ”GL” , t i m e s 160 5$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 5[ grep ( ”GL” , t i m e s 40 5$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 5[ grep ( ”GL” , t i m e s 160 5$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 5 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 5) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 5

x t e s t CL GL 7=matrix ( c (

t i m e s 40 7[ grep ( ”GL” , t i m e s 40 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 7[ grep ( ”GL” , t i m e s 160 7$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 7[ grep ( ”GL” , t i m e s 40 7$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 7[ grep ( ”GL” , t i m e s 160 7$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 7 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 7) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 7

x t e s t CL GL 9=matrix ( c (

t i m e s 40 9[ grep ( ”GL” , t i m e s 40 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 9[ grep ( ”GL” , t i m e s 160 9$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 9[ grep ( ”GL” , t i m e s 40 9$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 9[ grep ( ”GL” , t i m e s 160 9$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 9 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 9) ) ) , c on f . l e v e l = 0 . 9 0 )

y t e s t CL GL 9

x t e s t CL GL 10=matrix ( c (

t i m e s 40 10[ grep ( ”GL” , t i m e s 40 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 160 10[ grep ( ”GL” , t i m e s 160 10$Alg ) , ] $ C l u s t e r s ,

t i m e s 40 10[ grep ( ”GL” , t i m e s 40 10$Alg ) , ] $ T e s t . ms . ,

t i m e s 160 10[ grep ( ”GL” , t i m e s 160 10$Alg ) , ] $ T e s t . ms . ) ,

nrow=10 , dimnames= l i s t ( c ( 1 : 1 0 ) , c ( ” C l u s t e r s ” , ” T e s t . ms . ” ) ) )

y t e s t CL GL 10 = TukeyHSD ( aov ( lm ( T e s t . ms . ˜ f a c t o r ( C l u s t e r s ) , as . data . frame ( x t e s t CL GL 10) ) ) , con f . l e v e l = 0 . 9 0 )

y t e s t CL GL 10

C.2 R Script - Wilcoxon Test for Experiment 2

s c o r e s 160 = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\McPadLogs \\Combined \\160 s c o r e . c sv ” , h e a d e r=TRUE)

ac 160 df= s c o r e s 160[ grep ( ”AC” , s c o r e s 160 $Alg ) , ]

ag 160 df= s c o r e s 160[ grep ( ”AG” , s c o r e s 160 $Alg ) , ]

l 1 160 df= s c o r e s 160[ grep ( ”LH” , s c o r e s 160 $Alg ) , ]

g2 160 df= s c o r e s 160[ grep ( ”GL” , s c o r e s 160 $Alg ) , ]

s c o r e s 40 = read . csv ( ”Z : \ \ F a l l \ 11\\ c h a p t e r \ 4\\McPadLogs \\Combined \\40 s c o r e . c sv ” , h e a d e r=TRUE)

ac 40 df= s c o r e s 40[ grep ( ”AC” , s c o r e s 40$Alg ) , ]

ag 40 df= s c o r e s 40[ grep ( ”AG” , s c o r e s 40$Alg ) , ]

l 1 40 df= s c o r e s 40[ grep ( ”LH” , s c o r e s 40$Alg ) , ]

g2 40 df= s c o r e s 40[ grep ( ”GL” , s c o r e s 40$Alg ) , ]

ac 40 3 v = ac 40 df [ grep ( ” 3v ” , ac 40 df $ Conf ig ) , ] $ Score

ac 40 3 c = ac 40 df [ grep ( ” 3 c ” , ac 40 df $ Conf ig ) , ] $ Score

ac 40 5 v = ac 40 df [ grep ( ” 5v ” , ac 40 df $ Conf ig ) , ] $ Score

ac 40 5 c = ac 40 df [ grep ( ” 5 c ” , ac 40 df $ Conf ig ) , ] $ Score
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ac 40 7 v = ac 40 df [ grep ( ” 7v ” , ac 40 df $ Conf ig ) , ] $ Score

ac 40 7 c = ac 40 df [ grep ( ” 7 c ” , ac 40 df $ Conf ig ) , ] $ Score

ag 40 3 v = ag 40 df [ grep ( ” 3v ” , ag 40 df $ Conf ig ) , ] $ Score

ag 40 3 c = ag 40 df [ grep ( ” 3 c ” , ag 40 df $ Conf ig ) , ] $ Score

ag 40 5 v = ag 40 df [ grep ( ” 5v ” , ag 40 df $ Conf ig ) , ] $ Score

ag 40 5 c = ag 40 df [ grep ( ” 5 c ” , ag 40 df $ Conf ig ) , ] $ Score

ag 40 7 v = ag 40 df [ grep ( ” 7v ” , ag 40 df $ Conf ig ) , ] $ Score

ag 40 7 c = ag 40 df [ grep ( ” 7 c ” , ag 40 df $ Conf ig ) , ] $ Score

l 1 40 3 v = l 1 40 df [ grep ( ” 3v ” , l 1 40 df $ Conf ig ) , ] $ Score

l 1 40 3 c = l 1 40 df [ grep ( ” 3 c ” , l 1 40 df $ Conf ig ) , ] $ Score

l 1 40 5 v = l 1 40 df [ grep ( ” 5v ” , l 1 40 df $ Conf ig ) , ] $ Score

l 1 40 5 c = l 1 40 df [ grep ( ” 5 c ” , l 1 40 df $ Conf ig ) , ] $ Score

l 1 40 7 v = l 1 40 df [ grep ( ” 7v ” , l 1 40 df $ Conf ig ) , ] $ Score

l 1 40 7 c = l 1 40 df [ grep ( ” 7 c ” , l 1 40 df $ Conf ig ) , ] $ Score

g2 40 3 v = g2 40 df [ grep ( ” 3v ” , g2 40 df $ Conf ig ) , ] $ Score

g2 40 3 c = g2 40 df [ grep ( ” 3 c ” , g2 40 df $ Conf ig ) , ] $ Score

g2 40 5 v = g2 40 df [ grep ( ” 5v ” , g2 40 df $ Conf ig ) , ] $ Score

g2 40 5 c = g2 40 df [ grep ( ” 5 c ” , g2 40 df $ Conf ig ) , ] $ Score

g2 40 7 v = g2 40 df [ grep ( ” 7v ” , g2 40 df $ Conf ig ) , ] $ Score

g2 40 7 c = g2 40 df [ grep ( ” 7 c ” , g2 40 df $ Conf ig ) , ] $ Score

ac 160 3 v = ac 160 df [ grep ( ” 3v ” , ac 160 df $ Conf ig ) , ] $ Score

ac 160 3 c = ac 160 df [ grep ( ” 3 c ” , ac 160 df $ Conf ig ) , ] $ Score

ac 160 5 v = ac 160 df [ grep ( ” 5v ” , ac 160 df $ Conf ig ) , ] $ Score

ac 160 5 c = ac 160 df [ grep ( ” 5 c ” , ac 160 df $ Conf ig ) , ] $ Score

ac 160 7 v = ac 160 df [ grep ( ” 7v ” , ac 160 df $ Conf ig ) , ] $ Score

ac 160 7 c = ac 160 df [ grep ( ” 7 c ” , ac 160 df $ Conf ig ) , ] $ Score

ag 160 3 v = ag 160 df [ grep ( ” 3v ” , ag 160 df $ Conf ig ) , ] $ Score

ag 160 3 c = ag 160 df [ grep ( ” 3 c ” , ag 160 df $ Conf ig ) , ] $ Score

ag 160 5 v = ag 160 df [ grep ( ” 5v ” , ag 160 df $ Conf ig ) , ] $ Score

ag 160 5 c = ag 160 df [ grep ( ” 5 c ” , ag 160 df $ Conf ig ) , ] $ Score

ag 160 7 v = ag 160 df [ grep ( ” 7v ” , ag 160 df $ Conf ig ) , ] $ Score

ag 160 7 c = ag 160 df [ grep ( ” 7 c ” , ag 160 df $ Conf ig ) , ] $ Score

l 1 160 3 v = l 1 160 df [ grep ( ” 3v ” , l 1 160 df $ Conf ig ) , ] $ Score

l 1 160 3 c = l 1 160 df [ grep ( ” 3 c ” , l 1 160 df $ Conf ig ) , ] $ Score

l 1 160 5 v = l 1 160 df [ grep ( ” 5v ” , l 1 160 df $ Conf ig ) , ] $ Score

l 1 160 5 c = l 1 160 df [ grep ( ” 5 c ” , l 1 160 df $ Conf ig ) , ] $ Score

l 1 160 7 v = l 1 160 df [ grep ( ” 7v ” , l 1 160 df $ Conf ig ) , ] $ Score

l 1 160 7 c = l 1 160 df [ grep ( ” 7 c ” , l 1 160 df $ Conf ig ) , ] $ Score

g2 160 3 v = g2 160 df [ grep ( ” 3v ” , g2 160 df $ Conf ig ) , ] $ Score

g2 160 3 c = g2 160 df [ grep ( ” 3 c ” , g2 160 df $ Conf ig ) , ] $ Score

g2 160 5 v = g2 160 df [ grep ( ” 5v ” , g2 160 df $ Conf ig ) , ] $ Score

g2 160 5 c = g2 160 df [ grep ( ” 5 c ” , g2 160 df $ Conf ig ) , ] $ Score

g2 160 7 v = g2 160 df [ grep ( ” 7v ” , g2 160 df $ Conf ig ) , ] $ Score

g2 160 7 c = g2 160 df [ grep ( ” 7 c ” , g2 160 df $ Conf ig ) , ] $ Score
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Appendix D: Experimental Data for Experiment 2

D.1 Training Times for 40 Cluster Datasets

Table D.1: Training Times (s) for CPU ANN 40 Cluster Datasets

AC 0 1 3 5 7 9 10

1 6.7163 6.7153 6.8451 6.7027 6.7008 6.7166 6.7056

2 6.7086 6.6982 6.8569 6.7057 6.6991 6.6948 6.6938

3 6.7274 6.7299 6.8618 6.7135 6.7194 6.7279 6.7298

4 6.7151 6.7175 6.8580 6.7034 6.7049 6.7223 6.7193

5 6.7408 6.7314 6.8580 6.7244 6.7272 6.7340 6.7410

Table D.2: Training Times (s) for GPU ANN 40 Cluster Datasets

AG 0 1 3 5 7 9 10

1 4.0518 3.4350 3.4352 3.4323 3.4360 3.4333 3.4352

2 4.0567 3.4351 3.4354 3.4321 3.4349 3.4318 3.4347

3 4.0437 3.4346 3.4375 3.4331 3.4356 3.4321 3.4349

4 4.0548 3.4342 3.4351 3.4318 3.4356 3.4322 3.4366

5 4.0449 3.4340 3.4357 3.4327 3.4344 3.4316 3.4348
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Table D.3: Training Times (s) for CPU SVM 40 Cluster Datasets

LH 0 1 3 5 7 9 10

1 0.9681 0.3316 0.4872 0.6485 0.7126 0.8429 0.9794

2 0.9855 0.3415 0.5006 0.6552 0.7163 0.8552 0.9909

3 0.9493 0.3247 0.4796 0.6369 0.7054 0.8501 0.9767

4 0.9657 0.3257 0.4820 0.6381 0.7023 0.8428 0.9821

5 0.9714 0.3325 0.4869 0.6397 0.6999 0.8327 0.9664

Table D.4: Training Times (s) for GPU SVM 40 Cluster Datasets

GL 0 1 3 5 7 9 10

1 0.3185 0.1677 0.1553 0.1786 0.1726 0.1795 0.1860

2 0.3004 0.1674 0.1557 0.1797 0.1745 0.1821 0.1911

3 0.3006 0.1620 0.1511 0.1714 0.1648 0.1734 0.1826

4 0.3049 0.1625 0.1509 0.1757 0.1750 0.1763 0.1851

5 0.3067 0.1658 0.1491 0.1679 0.1705 0.1705 0.1786

D.2 Training Times for 160 Cluster Datasets

Table D.5: Training Times (s) for CPU ANN 160 Cluster Datasets

AC 0 1 3 5 7 9 10

1 14.2613 14.3266 14.1603 14.2901 14.1922 14.1889 14.1551

2 14.2842 14.3554 14.1738 14.2443 14.1494 14.1901 14.1488

3 14.3427 14.3245 14.1998 14.2856 14.1577 14.1653 14.1323

4 14.2402 14.3114 14.1468 14.2723 14.1385 14.1699 14.1275

5 14.2780 14.3019 14.1597 14.2881 14.1562 14.2081 14.2015
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Table D.6: Training Times (s) for GPU ANN 160 Cluster Datasets

AG 0 1 3 5 7 9 10

1 4.1997 3.5716 3.5748 3.5745 3.5769 3.5775 3.5781

2 4.1913 3.5715 3.5802 3.5742 3.5745 3.5719 3.5752

3 4.1976 3.5711 3.5750 3.5727 3.5763 3.5735 3.5761

4 4.1987 3.5717 3.5758 3.5716 3.5771 3.5773 3.5763

5 4.1869 3.5721 3.5775 3.5723 3.5744 3.5717 3.5746

Table D.7: Training Times (s) for CPU SVM 160 Cluster Datasets

LH 0 1 3 5 7 9 10

1 2.8058 1.8875 2.2280 2.5719 2.6965 3.0143 3.8520

2 2.8582 1.9153 2.2490 2.6124 2.7420 3.1162 3.9438

3 2.8092 1.8636 2.1899 2.5353 2.6605 3.0418 3.9120

4 2.8140 1.8826 2.2258 2.5672 2.7248 3.0905 3.9483

5 2.8466 1.8784 2.2352 2.5673 2.7069 3.1119 3.9682

Table D.8: Training Times (s) for GPU SVM 160 Cluster Datasets

GL 0 1 3 5 7 9 10

1 0.3820 0.2309 0.2184 0.2351 0.2476 0.2502 0.2517

2 0.3992 0.2366 0.2171 0.2385 0.2464 0.2597 0.2599

3 0.3916 0.2367 0.2210 0.2382 0.2535 0.2554 0.2587

4 0.4108 0.2386 0.2203 0.2423 0.2468 0.2562 0.2605

5 0.3944 0.2375 0.2173 0.2439 0.2538 0.2613 0.2636
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D.3 Testing Times 40 Cluster Datasets

Table D.9: Testing Times (ms) for CPU ANN 40 Cluster Datasets

AC 0 1 3 5 7 9 10

1 3.6222 3.7133 3.5682 3.649 3.6519 3.6131 3.6549

2 3.615 3.6964 3.5657 3.6341 3.6719 3.6339 3.6787

3 3.6163 3.7058 3.5801 3.6455 3.6683 3.6232 3.6551

4 3.6211 3.7037 3.5757 3.6793 3.6713 3.6357 3.6514

5 3.6432 3.7142 3.5882 3.6465 3.6618 3.6363 3.6771

Table D.10: Testing Times (ms) for GPU ANN 40 Cluster Datasets

AG 0 1 3 5 7 9 10

1 7.3652 10.3355 7.174 10.4203 6.8803 10.1253 6.8421

2 6.8431 9.7423 6.5844 9.8516 6.6393 9.6313 6.6322

3 6.867 9.76 6.6074 9.7533 6.5536 9.6494 6.5544

4 7.5779 10.1625 7.1591 10.5081 6.9628 10.2504 6.8302

5 6.6774 9.5648 6.4981 9.572 6.4223 9.4865 6.4044
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Table D.11: Testing Times (ms) for CPU SVM 40 Cluster Datasets

LH 0 1 3 5 7 9 10

1 74.3383 19.5923 30.0079 41.1312 49.3119 63.3173 78.1976

2 74.6268 19.6323 30.7686 41.1012 49.575 64.2538 78.7932

3 72.7006 19.3267 29.654 40.4885 48.8046 62.6071 77.4122

4 73.0921 19.4248 29.8266 40.7649 48.7425 62.9012 77.2125

5 73.1925 19.2266 29.6641 40.8169 49.0696 62.6285 77.6287

Table D.12: Testing Times (ms) for GPU ANN 40 Cluster Datasets

GL 0 1 3 5 7 9 10

1 57.2168 45.8018 45.0328 46.3492 45.6331 46.7354 45.7422

2 58.0419 46.8499 45.1212 47.1573 45.5681 47.9366 47.0187

3 56.2219 44.774 42.7564 45.0981 44.5871 46.1161 45.0117

4 57.1508 44.5417 43.4243 45.3192 44.4532 46.8363 45.9117

5 55.8963 44.3427 42.7401 44.6885 43.9131 46.8026 44.8443

D.4 Testing Times 160 Cluster Datasets

Table D.13: Testing Times (ms) for CPU ANN 160 Cluster Datasets

AC 0 1 3 5 7 9 10

1 10.3751 10.4083 10.4389 10.4222 10.4499 10.4243 10.4829

2 10.4585 10.44 10.4275 10.4287 10.45 10.4241 10.4768

3 10.4037 10.474 10.4653 10.4494 10.4219 10.4126 10.4034

4 10.4327 10.4541 10.425 10.3883 10.4217 10.4122 10.4257

5 10.4069 10.4233 10.4481 10.4892 10.4571 10.4636 10.4462
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Table D.14: Testing Times (ms) for GPU ANN 160 Cluster Datasets

AG 0 1 3 5 7 9 10

1 20.1624 23.4153 18.9178 22.3354 19.0831 22.2119 18.9277

2 18.9125 22.0817 18.5997 21.7825 18.6926 22.1112 18.7618

3 18.8996 22.2028 18.771 22.2725 19.5977 23.4529 20.1432

4 18.9831 22.2289 18.9523 21.8945 18.7145 22.0227 18.7324

5 19.1802 22.0899 18.7078 22.1158 18.8181 22.396 19.0355

Table D.15: Testing Times (ms) for CPU SVM 160 Cluster Datasets

LH 0 1 3 5 7 9 10

1 176.4792 112.289 137.809 156.236 167.009 197.729 252.66

2 175.7645 110.811 137.993 155.227 166.283 197.175 252.215

3 175.4326 110.649 136.995 154.588 165.801 196.886 251.85

4 176.3051 111.311 137.643 155.375 166.353 197.135 252.468

5 176.0898 111.098 137.237 155.041 166.566 197.029 252.08

Table D.16: Testing Times (ms) for GPU SVM 160 Cluster Datasets

GL 0 1 3 5 7 9 10

1 69.7474 65.9597 64.6537 64.8957 65.9107 65.1321 66.9211

2 71.8845 69.9446 68.9132 69.5085 68.1857 67.8321 68.9126

3 71.0208 67.5132 66.8477 66.477 66.6972 66.4321 68.419

4 70.9263 67.2452 66.2279 66.3471 66.8389 67.2069 69.9477

5 71.8235 67.41 66.9479 67.5541 67.0898 67.5547 69.6389
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D.5 Ensemble Accuracies for 40 cluster Datasets

Table D.17: Accuracies for CPU ANN Ensembles 40 for Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.5263 99.7121 99.5170 99.8050 99.3963 99.7957

2 99.5217 99.7075 99.5078 99.7539 99.3963 99.7771

3 99.5124 99.6935 99.5263 99.7864 99.4056 99.7818

4 99.5078 99.7121 99.5031 99.7678 99.3917 99.7771

5 99.5170 99.7167 99.5124 99.7632 99.4149 99.7725

Table D.18: Accuracies for GPU ANN Ensembles for 40 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.5263 99.7075 99.5124 99.7400 99.3870 99.7632

2 99.5170 99.7121 99.5078 99.7864 99.4009 99.7771

3 99.5170 99.7121 99.5170 99.7771 99.3917 99.7632

4 99.5171 99.7167 99.5170 99.7771 99.3963 99.7632

5 99.5217 99.6982 99.5217 99.7818 99.3916 99.7725

Table D.19: Accuracies for CPU SVM Ensembles for 40 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.8561 99.8561 99.8514 99.8654 99.8839 99.8793

2 99.8561 99.8561 99.8514 99.8793 99.8839 99.8886

3 99.8561 99.8561 99.8514 99.8839 99.8839 99.8793

4 99.8561 99.8561 99.8514 99.8747 99.8839 99.8793

5 99.8561 99.8561 99.8514 99.8700 99.8839 99.8793
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Table D.20: Accuracies for GPU SVM Ensembles for 40 Cluster Datasets

GL 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.5960 99.7167 99.6285 99.7864 99.4985 99.7725

2 99.5867 99.7075 99.6331 99.7539 99.5031 99.7771

3 99.5914 99.7167 99.6285 99.7632 99.5031 99.7725

4 99.5867 99.7121 99.6285 99.7864 99.4938 99.7911

5 99.5960 99.7167 99.6285 99.7585 99.5031 99.7911

D.6 Ensemble Accuracies for 160 cluster Datasets

Table D.21: Accuracies for CPU ANN Ensembles for 160 Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.4660 99.4892 99.4845 99.6378 99.33591 99.6517

2 99.4567 99.4799 99.5077 99.6610 99.32662 99.6378

3 99.4706 99.4938 99.5078 99.6378 99.34056 99.6517

4 99.4520 99.4706 99.4845 99.6610 99.33592 99.6703

5 99.4659 99.4706 99.4845 99.6146 99.3545 99.7028

Table D.22: Accuracies for GPU ANN Ensembles for 160 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.4660 99.5077 99.4892 99.6471 99.34521 99.6424

2 99.4613 99.4706 99.4753 99.6749 99.33592 99.675

3 99.4520 99.4845 99.4892 99.6517 99.33128 99.6285

4 99.4613 99.4892 99.5124 99.6285 99.33129 99.6471

5 99.4659 99.4613 99.4938 99.6471 99.32663 99.6378
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Table D.23: Accuracies for CPU SVM Ensembles for 160 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.8282 99.8421 99.8561 99.8607 99.84213 99.8561

2 99.8282 99.8328 99.8561 99.8607 99.84213 99.8561

3 99.8282 99.8282 99.8561 99.8607 99.84213 99.8607

4 99.8282 99.8328 99.8561 99.8607 99.84213 99.8561

5 99.8282 99.8514 99.8561 99.8561 99.84213 99.8746

Table D.24: Accuracies for GPU SVM Ensembles for 160 Cluster Datasets

GL 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 99.4567 99.4799 99.4752 99.6564 99.33129 99.6982

2 99.4474 99.4706 99.4752 99.6796 99.322 99.6982

3 99.4520 99.4381 99.4752 99.6842 99.32664 99.6982

4 99.4520 99.4752 99.4752 99.7121 99.33129 99.7074

5 99.4520 99.4567 99.4752 99.7167 99.31736 99.6796

D.7 Ensemble False Positive Rates for 40 Cluster Datasets

Table D.25: False Positive Rates for CPU ANN Ensembles for 40 Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.274% 0.228% 0.286% 0.189% 0.339% 0.202%

2 0.280% 0.241% 0.287% 0.228% 0.339% 0.221%

3 0.293% 0.241% 0.274% 0.215% 0.326% 0.202%

4 0.300% 0.228% 0.293% 0.202% 0.339% 0.221%

5 0.286% 0.222% 0.293% 0.208% 0.313% 0.215%
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Table D.26: False Positive Rates for GPU ANN Ensembles for 40 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.274% 0.228% 0.293% 0.209% 0.346% 0.221%

2 0.287% 0.228% 0.286% 0.208% 0.333% 0.228%

3 0.287% 0.228% 0.293% 0.215% 0.346% 0.209%

4 0.280% 0.228% 0.293% 0.202% 0.339% 0.221%

5 0.280% 0.241% 0.286% 0.209% 0.346% 0.221%

Table D.27: False Positive Rates for CPU SVM Ensembles for 40 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.072% 0.072% 0.078% 0.078% 0.085% 0.091%

2 0.072% 0.072% 0.078% 0.085% 0.085% 0.085%

3 0.072% 0.072% 0.078% 0.078% 0.085% 0.078%

4 0.072% 0.072% 0.078% 0.078% 0.085% 0.085%

5 0.072% 0.072% 0.078% 0.078% 0.085% 0.085%

Table D.28: False Positive Rates for GPU SVM Ensembles for 40 Cluster Datasets

GL 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.326% 0.267% 0.326% 0.234% 0.339% 0.254%

2 0.333% 0.280% 0.326% 0.261% 0.332% 0.254%

3 0.333% 0.267% 0.326% 0.260% 0.339% 0.260%

4 0.333% 0.274% 0.326% 0.234% 0.339% 0.254%

5 0.326% 0.267% 0.326% 0.261% 0.339% 0.260%
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D.8 Ensemble False Positive Rates for 160 Cluster Datasets

Table D.29: False Positive Rates for CPU ANN Ensembles for 160 Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.260% 0.267% 0.273% 0.280% 0.332% 0.260%

2 0.260% 0.260% 0.267% 0.254% 0.332% 0.254%

3 0.260% 0.267% 0.260% 0.300% 0.319% 0.241%

4 0.280% 0.293% 0.273% 0.280% 0.332% 0.260%

5 0.267% 0.273% 0.280% 0.273% 0.300% 0.234%

Table D.30: False Positive Rates for GPU ANN Ensembles for 160 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.273% 0.254% 0.280% 0.273% 0.312% 0.267%

2 0.267% 0.280% 0.287% 0.267% 0.332% 0.228%

3 0.274% 0.273% 0.267% 0.267% 0.326% 0.280%

4 0.260% 0.274% 0.254% 0.273% 0.332% 0.254%

5 0.267% 0.287% 0.273% 0.280% 0.332% 0.260%

Table D.31: False Positive Rates for CPU SVM Ensembles for 160 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.143% 0.123% 0.104% 0.098% 0.117% 0.104%

2 0.143% 0.136% 0.104% 0.098% 0.117% 0.098%

3 0.143% 0.136% 0.104% 0.098% 0.117% 0.091%

4 0.143% 0.124% 0.104% 0.098% 0.117% 0.098%

5 0.143% 0.111% 0.104% 0.104% 0.117% 0.078%
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Table D.32: False Positive Rates for GPU SVM Ensembles for 160 Cluster Datasets

GL 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.312% 0.143% 0.326% 0.319% 0.391% 0.299%

2 0.312% 0.143% 0.326% 0.319% 0.391% 0.299%

3 0.312% 0.143% 0.326% 0.345% 0.391% 0.319%

4 0.312% 0.143% 0.326% 0.312% 0.391% 0.306%

5 0.312% 0.143% 0.326% 0.293% 0.391% 0.319%

D.9 Ensemble False Negative Rates for 40 Cluster Datasets

Table D.33: False Negative Rates for CPU ANN Ensembles for 40 Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.968% 0.437% 0.972% 0.238% 1.260% 0.212%

2 0.969% 0.420% 1.001% 0.326% 1.260% 0.228%

3 0.968% 0.469% 0.971% 0.223% 1.260% 0.261%

4 0.968% 0.436% 1.002% 0.341% 1.276% 0.227%

5 0.968% 0.437% 0.972% 0.341% 1.260% 0.260%

Table D.34: False Negative Rates for GPU ANN Ensembles for 40 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.968% 0.453% 0.972% 0.414% 1.276% 0.276%

2 0.968% 0.437% 1.002% 0.237% 1.260% 0.211%

3 0.969% 0.437% 0.958% 0.267% 1.260% 0.309%

4 0.985% 0.421% 0.958% 0.280% 1.260% 0.276%

5 0.968% 0.453% 0.958% 0.283% 1.260% 0.244%
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Table D.35: False Negative Rates for CPU SVM Ensembles for 40 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.324% 0.324% 0.340% 0.280% 0.193% 0.193%

2 0.324% 0.324% 0.340% 0.189% 0.193% 0.177%

3 0.324% 0.324% 0.340% 0.189% 0.193% 0.226%

4 0.324% 0.324% 0.340% 0.267% 0.193% 0.210%

5 0.324% 0.324% 0.340% 0.281% 0.193% 0.209%

Table D.36: False Negative Rates for GPU SVM Ensembles for 40 Cluster Datasets

Run 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.595% 0.323% 0.453% 0.162% 0.904% 0.161%

2 0.611% 0.323% 0.438% 0.206% 0.905% 0.145%

3 0.595% 0.323% 0.453% 0.161% 0.888% 0.144%

4 0.611% 0.323% 0.453% 0.146% 0.920% 0.097%

5 0.595% 0.323% 0.453% 0.176% 0.888% 0.080%

D.10 Ensemble False Negative Rates for 160 Cluster Datasets

Table D.37: False Negative Rates for CPU ANN Ensembles for 160 Cluster Datasets

AC 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 1.212% 1.115% 1.121% 0.592% 1.487% 0.562%

2 1.244% 1.162% 1.046% 0.515% 1.518% 0.628%

3 1.196% 1.099% 1.061% 0.499% 1.502% 0.614%

4 1.212% 1.115% 1.105% 0.453% 1.485% 0.499%

5 1.196% 1.163% 1.090% 0.679% 1.502% 0.452%
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Table D.38: False Negative Rates for GPU ANN Ensembles for 160 Cluster Datasets

AG 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 1.179% 1.084% 1.075% 0.513% 1.501% 0.583%

2 1.212% 1.148% 1.105% 0.440% 1.485% 0.565%

3 1.228% 1.115% 1.105% 0.513% 1.517% 0.597%

4 1.228% 1.097% 1.061% 0.585% 1.503% 0.597%

5 1.196% 1.163% 1.076% 0.563% 1.516% 0.613%

Table D.39: False Negative Rates for CPU SVM Ensembles for 160 Cluster Datasets

LH 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 0.243% 0.243% 0.252% 0.252% 0.259% 0.243%

2 0.243% 0.243% 0.252% 0.252% 0.259% 0.259%

3 0.243% 0.259% 0.252% 0.252% 0.259% 0.259%

4 0.243% 0.275% 0.252% 0.252% 0.259% 0.259%

5 0.243% 0.243% 0.252% 0.252% 0.259% 0.242%

Table D.40: False Negative Rates for GPU SVM Ensembles for 160 Cluster Datasets

GL 3 Vote 3 Class 5 Vote 5 Class 7 Vote 7 Class

1 1.114% 0.243% 1.000% 0.365% 1.356% 0.304%

2 1.147% 0.243% 1.000% 0.308% 1.390% 0.305%

3 1.130% 0.243% 1.000% 0.219% 1.372% 0.259%

4 1.130% 0.243% 1.000% 0.205% 1.356% 0.258%

5 1.130% 0.243% 1.000% 0.234% 1.406% 0.323%
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