3,584 research outputs found

    Efficient Detectors for MIMO-OFDM Systems under Spatial Correlation Antenna Arrays

    Full text link
    This work analyzes the performance of the implementable detectors for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system condi- tions, including antenna correlation and array configuration. Time-domain channel model has been used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order and antenna arrays configurations. A bunch of MIMO-OFDM detectors were analyzed for the purpose of achieve high performance combined with high capacity systems and manageable computational complexity. Numerical Monte-Carlo simulations (MCS) demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.Comment: 26 pgs, 16 figures and 5 table

    A Comparison of Hybrid Beamforming and Digital Beamforming with Low-Resolution ADCs for Multiple Users and Imperfect CSI

    Get PDF
    For 5G it will be important to leverage the available millimeter wave spectrum. To achieve an approximately omni- directional coverage with a similar effective antenna aperture compared to state of the art cellular systems, an antenna array is required at both the mobile and basestation. Due to the large bandwidth and inefficient amplifiers available in CMOS for mmWave, the analog front-end of the receiver with a large number of antennas becomes especially power hungry. Two main solutions exist to reduce the power consumption: hybrid beam forming and digital beam forming with low resolution Analog to Digital Converters (ADCs). In this work we compare the spectral and energy efficiency of both systems under practical system constraints. We consider the effects of channel estimation, transmitter impairments and multiple simultaneous users. Our power consumption model considers components reported in literature at 60 GHz. In contrast to many other works we also consider the correlation of the quantization error, and generalize the modeling of it to non-uniform quantizers and different quantizers at each antenna. The result shows that as the SNR gets larger the ADC resolution achieving the optimal energy efficiency gets also larger. The energy efficiency peaks for 5 bit resolution at high SNR, since due to other limiting factors the achievable rate almost saturates at this resolution. We also show that in the multi-user scenario digital beamforming is in any case more energy efficient than hybrid beamforming. In addition we show that if different ADC resolutions are used we can achieve any desired trade-offs between power consumption and rate close to those achieved with only one ADC resolution.Comment: Submitted to JSTSP. arXiv admin note: text overlap with arXiv:1610.0290

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201
    • …
    corecore