1,645 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed Environments: A Systematic Review

    Full text link
    Planning an autonomous vehicle's (AV) path in a space shared with pedestrians requires reasoning about pedestrians' future trajectories. A practical pedestrian trajectory prediction algorithm for the use of AVs needs to consider the effect of the vehicle's interactions with the pedestrians on pedestrians' future motion behaviours. In this regard, this paper systematically reviews different methods proposed in the literature for modelling pedestrian trajectory prediction in presence of vehicles that can be applied for unstructured environments. This paper also investigates specific considerations for pedestrian-vehicle interaction (compared with pedestrian-pedestrian interaction) and reviews how different variables such as prediction uncertainties and behavioural differences are accounted for in the previously proposed prediction models. PRISMA guidelines were followed. Articles that did not consider vehicle and pedestrian interactions or actual trajectories, and articles that only focused on road crossing were excluded. A total of 1260 unique peer-reviewed articles from ACM Digital Library, IEEE Xplore, and Scopus databases were identified in the search. 64 articles were included in the final review as they met the inclusion and exclusion criteria. An overview of datasets containing trajectory data of both pedestrians and vehicles used by the reviewed papers has been provided. Research gaps and directions for future work, such as having more effective definition of interacting agents in deep learning methods and the need for gathering more datasets of mixed traffic in unstructured environments are discussed.Comment: Published in IEEE Transactions on Intelligent Transportation System

    A Comprehensive Review of Data-Driven Co-Speech Gesture Generation

    Full text link
    Gestures that accompany speech are an essential part of natural and efficient embodied human communication. The automatic generation of such co-speech gestures is a long-standing problem in computer animation and is considered an enabling technology in film, games, virtual social spaces, and for interaction with social robots. The problem is made challenging by the idiosyncratic and non-periodic nature of human co-speech gesture motion, and by the great diversity of communicative functions that gestures encompass. Gesture generation has seen surging interest recently, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep-learning-based generative models, that benefit from the growing availability of data. This review article summarizes co-speech gesture generation research, with a particular focus on deep generative models. First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule-based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text, and non-linguistic input. We also chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method. Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human-like motion; grounding the gesture in the co-occurring speech in interaction with other speakers, and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.Comment: Accepted for EUROGRAPHICS 202

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Deep Reinforcement Learning for Robotic Tasks: Manipulation and Sensor Odometry

    Get PDF
    Research in robotics has frequently focused on artificial intelligence (AI). To increase the effectiveness of the learning process for the robot, numerous studies have been carried out. To be more effective, robots must be able to learn effectively in a shorter amount of time and with fewer resources. It has been established that reinforcement learning (RL) is efficient for aiding a robot's learning. In this dissertation, we proposed and optimized RL algorithms to ensure that our robots learn well. Research into driverless or self-driving automobiles has exploded in the last few years. A precise estimation of the vehicle's motion is crucial for higher levels of autonomous driving functionality. Recent research has been done on the development of sensors to improve the localization accuracy of these vehicles. Recent sensor odometry research suggests that Lidar Monocular Visual Odometry (LIMO) can be beneficial for determining odometry. However, the LIMO algorithm has a considerable number of errors when compared to ground truth, which motivates us to investigate ways to make it far more accurate. We intend to use a Genetic Algorithm (GA) in our dissertation to improve LIMO's performance. Robotic manipulator research has also been popular and has room for development, which piqued our interest. As a result, we researched robotic manipulators and applied GA to Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER) (GA+DDPG+HER). Finally, we kept researching DDPG and created an algorithm named AACHER. AACHER uses HER and many independent instances of actors and critics from the DDPG to increase a robot's learning effectiveness. AACHER is used to evaluate the results in both custom and existing robot environments.In the first part of our research, we discuss the LIMO algorithm, an odometry estimation technique that employs a camera and a Lidar for visual localization by tracking features from their measurements. LIMO can estimate sensor motion via Bundle Adjustment based on reliable keyframes. LIMO employs weights of the vegetative landmarks and semantic labeling to reject outliers. LIMO, like many other odometry estimating methods, has the issue of having a lot of hyperparameters that need to be manually modified in response to dynamic changes in the environment to reduce translational errors. The GA has been proven to be useful in determining near-optimal values of learning hyperparameters. In our study, we present and propose the application of the GA to maximize the performance of LIMO's localization and motion estimates by optimizing its hyperparameters. We test our approach using the well-known KITTI dataset and demonstrate how the GA supports LIMO to lower translation errors in various datasets. Our second contribution includes the use of RL. Robots using RL can select actions based on a reward function. On the other hand, the choice of values for the learning algorithm's hyperparameters could have a big impact on the entire learning process. We used GA to find the hyperparameters for the Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER). We proposed the algorithm GA+DDPG+HER to optimize learning hyperparameters and applied it to the robotic manipulation tasks of FetchReach, FetchSlide, FetchPush, FetchPick\&Place, and DoorOpening. With only a few modifications, our proposed GA+DDPG+HER was also used in the AuboReach environment. Compared to the original algorithm (DDPG+HER), our experiments show that our approach (GA+DDPG+HER) yields noticeably better results and is substantially faster. In the final part of our dissertation, we were motivated to use and improve DDPG. Many simulated continuous control problems have shown promising results for the DDPG, a unique Deep Reinforcement Learning (DRL) technique. DDPG has two parts: Actor learning and Critic learning. The performance of the DDPG technique is therefore relatively sensitive and unstable because actor and critic learning is a considerable contributor to the robot’s total learning. Our dissertation suggests a multi-actor-critic DDPG for reliable actor-critic learning as an improved DDPG to further enhance the performance and stability of DDPG. This multi-actor-critic DDPG is further combined with HER, called AACHER. The average value of numerous actors/critics is used to replace the single actor/critic in the traditional DDPG approach for improved resistance when one actor/critic performs poorly. Numerous independent actors and critics can also learn from the environment in general. In all the actor/critic number combinations that are evaluated, AACHER performs better than DDPG+HER

    Intelligent interface agents for biometric applications

    Get PDF
    This thesis investigates the benefits of applying the intelligent agent paradigm to biometric identity verification systems. Multimodal biometric systems, despite their additional complexity, hold the promise of providing a higher degree of accuracy and robustness. Multimodal biometric systems are examined in this work leading to the design and implementation of a novel distributed multi-modal identity verification system based on an intelligent agent framework. User interface design issues are also important in the domain of biometric systems and present an exceptional opportunity for employing adaptive interface agents. Through the use of such interface agents, system performance may be improved, leading to an increase in recognition rates over a non-adaptive system while producing a more robust and agreeable user experience. The investigation of such adaptive systems has been a focus of the work reported in this thesis. The research presented in this thesis is divided into two main parts. Firstly, the design, development and testing of a novel distributed multi-modal authentication system employing intelligent agents is presented. The second part details design and implementation of an adaptive interface layer based on interface agent technology and demonstrates its integration with a commercial fingerprint recognition system. The performance of these systems is then evaluated using databases of biometric samples gathered during the research. The results obtained from the experimental evaluation of the multi-modal system demonstrated a clear improvement in the accuracy of the system compared to a unimodal biometric approach. The adoption of the intelligent agent architecture at the interface level resulted in a system where false reject rates were reduced when compared to a system that did not employ an intelligent interface. The results obtained from both systems clearly express the benefits of combining an intelligent agent framework with a biometric system to provide a more robust and flexible application

    Detection and Isolation of Faults and Cyberattacks in Nonlinear Cyber-Physical Systems using Neural Networks

    Get PDF
    The theory of Cyber-physical systems (CPSs) has applications in critical infrastructures such as smart grids, manufacturing systems, transportation systems, and autonomous systems such as Unmanned Aerial Vehicles(UAVs). In the CPS, there is a coordination between communication, computation, and control. The communication link in CPS can be subjected to malicious cyberattacks. On the other hand, the physical system in CPS can be faced with different faults such as sensor, actuator, and component faults. Therefore, two significant and challenging problems in CPS can be the detection of faults and cyberattacks. These two threats are intrinsically distinctive and need different strategies to deal with when they occur. This research mainly focuses on providing a methodology to detect and isolate faults and cyberattacks. This work considers false data injection and replay attacks as security threats. Two different adaptive neural network-based detection methods are proposed in this thesis. These adaptive neural networks are able to detect, isolate, and estimate false data injection, and replay attacks. Another contribution of this thesis is to provide a scheme for isolating faults and cyberattacks (false data injection and replay attacks) by using virtual sensors on the plant side, which makes the simultaneous detection of faults and false data injection cyberattacks possible. A nonlinear model of a quadrotor is considered the case study, and the performance of the neural network-based schemes is evaluated through various numerical simulation scenarios
    corecore