5,311 research outputs found

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Channel-Recurrent Autoencoding for Image Modeling

    Full text link
    Despite recent successes in synthesizing faces and bedrooms, existing generative models struggle to capture more complex image types, potentially due to the oversimplification of their latent space constructions. To tackle this issue, building on Variational Autoencoders (VAEs), we integrate recurrent connections across channels to both inference and generation steps, allowing the high-level features to be captured in global-to-local, coarse-to-fine manners. Combined with adversarial loss, our channel-recurrent VAE-GAN (crVAE-GAN) outperforms VAE-GAN in generating a diverse spectrum of high resolution images while maintaining the same level of computational efficacy. Our model produces interpretable and expressive latent representations to benefit downstream tasks such as image completion. Moreover, we propose two novel regularizations, namely the KL objective weighting scheme over time steps and mutual information maximization between transformed latent variables and the outputs, to enhance the training.Comment: Code: https://github.com/WendyShang/crVAE. Supplementary Materials: http://www-personal.umich.edu/~shangw/wacv18_supplementary_material.pd

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    Probabilistic reasoning and inference for systems biology

    Get PDF
    One of the important challenges in Systems Biology is reasoning and performing hypotheses testing in uncertain conditions, when available knowledge may be incomplete and the experimental data may contain substantial noise. In this thesis we develop methods of probabilistic reasoning and inference that operate consistently within an environment of uncertain knowledge and data. Mechanistic mathematical models are used to describe hypotheses about biological systems. We consider both deductive model based reasoning and model inference from data. The main contributions are a novel modelling approach using continuous time Markov chains that enables deductive derivation of model behaviours and their properties, and the application of Bayesian inferential methods to solve the inverse problem of model inference and comparison, given uncertain knowledge and noisy data. In the first part of the thesis, we consider both individual and population based techniques for modelling biochemical pathways using continuous time Markov chains, and demonstrate why the latter is the most appropriate. We illustrate a new approach, based on symbolic intervals of concentrations, with an example portion of the ERK signalling pathway. We demonstrate that the resulting model approximates the same dynamic system as traditionally defined using ordinary differential equations. The advantage of the new approach is quantitative logical analysis; we formulate a number of biologically significant queries in the temporal logic CSL and use probabilistic symbolic model checking to investigate their veracity. In the second part of the thesis, we consider the inverse problem of model inference and testing of alternative hypotheses, when models are defined by non-linear ordinary differential equations and the experimental data is noisy and sparse. We compare and evaluate a number of statistical techniques, and implement an effective Bayesian inferential framework for systems biology based on Markov chain Monte Carlo methods and estimation of marginal likelihoods by annealing-melting integration. We illustrate the framework with two case studies, one of which involves an open problem concerning the mediation of ERK phosphorylation in the ERK pathway
    • …
    corecore