4 research outputs found

    Complexity reduction of influence nets using arc removal

    Full text link
    © 2015 - IOS Press and the authors. The model building of Influence Nets, a special instance of Bayesian belief networks, is a time-consuming and labor-intensive task. No formal process exists that decision makers/system analyst, who are typically not familiar with the underlying theory and assumptions of belief networks, can use to build concise and easy-to-interpret models. In many cases, the developed model is extremely dense, that is, it has a very high link-to-node ratio. The complexity of a network makes the already intractable task of belief updating more difficult. The problem is further intensified in dynamic domains where the structure of the built model is repeated for multiple time-slices. It is, therefore, desirable to do a post-processing of the developed models and to remove arcs having a negligible influence on the variable(s) of interests. The paper applies sensitivity of arc analysis to identify arcs that can be removed from an Influence Net without having a significant impact on its inferencing capability. A metric is suggested to gauge changes in the joint distribution of variables before and after the arc removal process. The results are benchmarked against the KL divergence metric. An empirical study based on several real Influence Nets is conducted to test the performance of the sensitivity of arc analysis in reducing the model complexity of an Influence Net without causing a significant change in its joint probability distribution

    Modeling time-varying uncertain situations using Dynamic Influence Nets

    Get PDF
    AbstractThis paper enhances the Timed Influence Nets (TIN) based formalism to model uncertainty in dynamic situations. The enhancements enable a system modeler to specify persistence and time-varying influences in a dynamic situation that the existing TIN fails to capture. The new class of models is named Dynamic Influence Nets (DIN). Both TIN and DIN provide an alternative easy-to-read and compact representation to several time-based probabilistic reasoning paradigms including Dynamic Bayesian Networks. The Influence Net (IN) based approach has its origin in the Discrete Event Systems modeling. The time delays on arcs and nodes represent the communication and processing delays, respectively, while the changes in the probability of an event at different time instants capture the uncertainty associated with the occurrence of the event over a period of time
    corecore