CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Complexity reduction of influence nets using arc removal
Authors
S Haider
SA Raza
Publication date
1 January 2015
Publisher
'IOS Press'
Doi
Cite
Abstract
© 2015 - IOS Press and the authors. The model building of Influence Nets, a special instance of Bayesian belief networks, is a time-consuming and labor-intensive task. No formal process exists that decision makers/system analyst, who are typically not familiar with the underlying theory and assumptions of belief networks, can use to build concise and easy-to-interpret models. In many cases, the developed model is extremely dense, that is, it has a very high link-to-node ratio. The complexity of a network makes the already intractable task of belief updating more difficult. The problem is further intensified in dynamic domains where the structure of the built model is repeated for multiple time-slices. It is, therefore, desirable to do a post-processing of the developed models and to remove arcs having a negligible influence on the variable(s) of interests. The paper applies sensitivity of arc analysis to identify arcs that can be removed from an Influence Net without having a significant impact on its inferencing capability. A metric is suggested to gauge changes in the joint distribution of variables before and after the arc removal process. The results are benchmarked against the KL divergence metric. An empirical study based on several real Influence Nets is conducted to test the performance of the sensitivity of arc analysis in reducing the model complexity of an Influence Net without causing a significant change in its joint probability distribution
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019