2 research outputs found

    Adaptive real-time tool for human gait event detection using a wearable gyroscope

    Get PDF
    The development of robust algorithms for human gait analysis are essential to evaluate the gait performance, and in many cases, crucial for diagnosing gait pathologies. This work proposes a new adaptive tool for human gait event detection in real-time, based on the angular velocity recorded from one gyroscope placed on the instep of the foot and in a finite state machine with adaptive decision rules. The signal was segmented to detect 6 events: Heel Strike (HS), Foot Flat (FF), Middle Mid-Stance (MMST), Heel-Off (HO), Toe-Off (TO), and Middle Mid-Swing (MMSW). The tool was validated with healthy subjects in ground-level walking using a treadmill, for different speeds (1.5 to 4.5 km/h) and slopes (0 to 10%). The results show that the tool is highly accurate and versatile for the detection of all events, as indicated by the values of accuracy, average delays and advances (HS: 99.96%,-7.95 ms, and 9.85 ms; FF: 99.48%,-4.95 ms, and 9.35 ms; MMST: 98.26%, 36.54 ms, and 16.38 ms; HO: 98.87%,-22.71 ms, and 18.62 ms; TO: 95.95%,-6.80 ms, 14.38 ms; MMSW: 96.06%,-3.45 ms; 0.15 ms, respectively). These findings suggest that the proposed tool is suitable for the real-time gait analysis in real-life activities.- (POCI

    Gait event detection in controlled and real-life situations: repeated measures from healthy subjects

    Get PDF
    A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective ( 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, by the Reference Project under Grant UID/EEA/04436/2013, and part by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941, and in part by Spanish Ministry of Economy and Competitiveness Grant RYC-2014-16613
    corecore