15,639 research outputs found

    Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup

    No full text
    In this study, wrinkling failure in conventional spinning of a cylindrical cup has been investigated by using both finite element (FE) analysis and experimental methods. FE simulation models of a spinning experiment have been developed using the explicit finite element solution method provided by the software Abaqus. The severity of wrinkles is quantified by calculating the standard deviation of the radial coordinates of element nodes on the edge of the workpiece obtained from the FE models. The results show that the severity of wrinkles tends to increase when increasing the roller feed ratio. A forming limit study for wrinkling has been carried out and shows that there is a feed ratio limit beyond which the wrinkling failure will take place. Provided that the feed ratio is kept below this limit, the wrinkling failure can be prevented. It is believed that high compressive tangential stresses in the local forming zone are the causes of the wrinkling failure. Furthermore, the computational performance of the solid and shell elements in simulating the spinning process are examined and the tool forces obtained from wrinkling and wrinkle-free models are compared. Finally, the effects of the feed ratio on variations of the wall thickness of the spun cylindrical cup are investigated. </jats:p

    Real-time imaging of pulvinus bending in Mimosa pudica

    Get PDF
    Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. M. pudica does not perform merely simple movements, but exhibits a variety of movements that quickly change depending on the type of stimuli. Previous studies have investigated the motile mechanism of the plants from a biochemical perspective. However, an interdisciplinary study on the structural characteristics of M. pudica should be accompanied by biophysical research to explain the principles underlying such movements. In this study, the structural characteristics and seismonastic reactions of M. pudica were experimentally investigated using advanced bio-imaging techniques. The results show that the key factors for the flexible movements by the pulvinus are the following: bendable xylem bundle, expandable/shrinkable epidermis, tiny wrinkles for surface modification, and a xylem vessel network for efficient water transport. This study provides new insight for better understanding the M. pudica motile mechanism through structural modification.open1111Nsciescopu

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Relative Facial Action Unit Detection

    Full text link
    This paper presents a subject-independent facial action unit (AU) detection method by introducing the concept of relative AU detection, for scenarios where the neutral face is not provided. We propose a new classification objective function which analyzes the temporal neighborhood of the current frame to decide if the expression recently increased, decreased or showed no change. This approach is a significant change from the conventional absolute method which decides about AU classification using the current frame, without an explicit comparison with its neighboring frames. Our proposed method improves robustness to individual differences such as face scale and shape, age-related wrinkles, and transitions among expressions (e.g., lower intensity of expressions). Our experiments on three publicly available datasets (Extended Cohn-Kanade (CK+), Bosphorus, and DISFA databases) show significant improvement of our approach over conventional absolute techniques. Keywords: facial action coding system (FACS); relative facial action unit detection; temporal information;Comment: Accepted at IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs Colorado, USA, 201

    Modern concepts in non-surgical esthetics; a review

    Get PDF
    New non-surgical esthetics is the most dynamic field in contemporary medicine. At the same time, it is greatly influenced by our contemporary society. This paper reviews modern methods used in non-surgical esthetics, especially in Romania. From injectology and non-surgical face lifting to non-surgical body contouring, we analyzed all procedures performed by Romanian physicians, and we show the advantages and disadvantages of the advanced esthetic procedures. Injectology typically implies hyaluronic acid, botox and mesotherapy (for wrinkles and rejuvenation). Laser and radiofrequency treatment are used for wrinkles as well, with fewer unwanted adverse reactions and results exceeding those of injectables. Non-surgical lifting has gained more ground because it requires little recovery time and the results are very positive. Elective treatment for facial discoloration is the laser approach. For non-surgical body contouring, cryolipolisis, vacuum, radio frequency, and infrared systems have all revolutionized this part of esthetics, but each has limitations, and only after establishing the correct course of action, might we think of achieving favorable results and thus raising to the expectations of patients

    A deformation transformer for real-time cloth animation

    Get PDF
    Achieving interactive performance in cloth animation has significant implications in computer games and other interactive graphics applications. Although much progress has been made, it is still much desired to have real-time high-quality results that well preserve dynamic folds and wrinkles. In this paper, we introduce a hybrid method for real-time cloth animation. It relies on datadriven models to capture the relationship between cloth deformations at two resolutions. Such data-driven models are responsible for transforming low-quality simulated deformations at the low resolution into high-resolution cloth deformations with dynamically introduced fine details. Our data-driven transformation is trained using rotation invariant quantities extracted from the cloth models, and is independent of the simulation technique chosen for the lower resolution model. We have also developed a fast collision detection and handling scheme based on dynamically transformed bounding volumes. All the components in our algorithm can be efficiently implemented on programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth models. © 2010 ACM.postprin
    corecore