1,274 research outputs found

    Collaborative software design and modeling in virtual reality

    Full text link
    Context: Software engineering is becoming more and more distributed. Developers and other stakeholders are often located in different locations, departments, and countries and operating within different time zones. Most online software design and modeling tools are not adequate for distributed collaboration since they do not support awareness and lack features for effective communication. Objective: The aim of our research is to support distributed software design activities in Virtual Reality (VR). Method: Using design science research methodology, we design and evaluate a tool for collaborative design in VR. We evaluate the collaboration efficiency and recall of design information when using the VR software design environment compared to a non-VR software design environment. Moreover, we collect the perceptions and preferences of users to explore the opportunities and challenges that were incurred by using the VR software design environment. Results: We find that there is no significant difference in the efficiency and recall of design information when using the VR compared to the non-VR environment. Furthermore, we find that developers are more satisfied with collaboration in VR. Conclusion: The results of our research and similar studies show that working in VR is not yet faster or more efficient than working on standard desktops. It is very important to improve the interface in VR (gestures with haptics, keyboard and voice input), as confirmed by the difference in results between the first and second evaluation

    Web collaboration for software engineering

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    The Requirements Editor RED

    Get PDF

    Software Engineering Timeline: major areas of interest and multidisciplinary trends

    Get PDF
    Ingeniería del software. EvolucionSociety today cannot run without software and by extension, without Software Engineering. Since this discipline emerged in 1968, practitioners have learned valuable lessons that have contributed to current practices. Some have become outdated but many are still relevant and widely used. From the personal and incomplete perspective of the authors, this paper not only reviews the major milestones and areas of interest in the Software Engineering timeline helping software engineers to appreciate the state of things, but also tries to give some insights into the trends that this complex engineering will see in the near future

    UML in practice

    Get PDF
    UML has been described by some as “the lingua franca of software engineering”. Evidence from industry does not necessarily support such endorsements. How exactly is UML being used in industry – if it is? This paper presents a corpus of interviews with 50 professional software engineers in 50 companies and identifies 5 patterns of UML use

    Development of New Model-based Methods in ASIC Requirements Engineering

    Get PDF
    Requirements in the development of application-specific integrated circuits (ASICs) continue to increase. This leads to more complexities in handling and processing the requirements, which often causes inconsistencies in the requirments. To better manage the resulting complexities, ASIC development is evolving into a model-based process. This thesis is part of a continuing research into the application and evolution of a model-based process for ASIC development at the Robert Bosch GmbH. It focuses on providing methologies that enable tracing of ASIC requirements and specifications as part of a model-based development process to eliminate inconsistencies in the requirements. The question of what requirements are and, what their traceability means, is defined and analysed in the context of their relationships to models. This thesis applies requirements engineering (RE) practices to the processing of ASIC requirements in a development environment. This environment is defined by availability of tools which are compliant with some standards and technologies. Relying on semi-formal interviews to understand the process in this environment and what stakeholders expect, this thesis applies the standards and technologies with which these tools are compliant to provide methodologies that ensures requirements traceability. Effective traceability methods were proven to be matrices and tables, but for cases of fewer requirements (ten or below), requirement diagrams are also efficient and effective. Furthermore, the development process as a collaborative effort was shown to be enhanced by using the resulting tool-chain, when the defined methodologies are properly followed. This solution was tested on an ASIC concept development project as a case study

    A research roadmap towards achieving scalability in model driven engineering

    Get PDF
    International audienceAs Model-Driven Engineering (MDE) is increasingly applied to larger and more complex systems, the current generation of modelling and model management technologies are being pushed to their limits in terms of capacity and eciency. Additional research and development is imperative in order to enable MDE to remain relevant with industrial practice and to continue delivering its widely recognised productivity , quality, and maintainability benefits. Achieving scalabil-ity in modelling and MDE involves being able to construct large models and domain-specific languages in a systematic manner, enabling teams of modellers to construct and refine large models in a collaborative manner, advancing the state of the art in model querying and transformations tools so that they can cope with large models (of the scale of millions of model elements), and providing an infrastructure for ecient storage, indexing and retrieval of large models. This paper attempts to provide a research roadmap for these aspects of scalability in MDE and outline directions for work in this emerging research area

    Towards useful and usable interaction design tools: CanonSketch

    Get PDF
    Despite all the effort dedicated to bringing better User-Centered Design (UCD) tools to market, current studies show that the industry is still dominated by tools that do not support the activities and workstyles of designers. Also, there is a growing need for interaction design tools aimed at software engineers, a problem related to bringing usability into the software engineering processes. We propose a new workstyle model that can be effectively used to envision, design and evaluate a new generation of innovative interaction and software design tools, aimed at integrating usability and software engineering. We illustrate the effectiveness of our model by describing a new tool, called CanonSketch, that was built in order to support UCD in terms of the dimensions in our workstyle model. We also describe an evaluation study aimed at contrasting paper prototyping with our tool as well as the level of workstyle support.info:eu-repo/semantics/publishedVersio

    Developing Executable Digital Models with Model-Based Systems Engineering – An Unmanned Aerial Vehicle Surveillance Scenario Example

    Get PDF
    There is an increase in complexity in modern systems that causes inconsistencies in the iterative exchange loops of the system design process and in turn, demands greater quality of system organization and optimization techniques. A recent transition from document-centric systems engineering to Model-Based Systems Engineering (MBSE) is being documented in literature from various industries to address these issues. This study aims to investigate how MBSE can be used as a starting point in developing digital twins (DT). Specifically, the adoption of MBSE for realizing DT has been investigated, resulting in various literature reviews that indicate the most prevalent methodologies and tools used to enhance and validate existing and future systems. An MBSE-enabled template for virtual model development was executed for the creation of executable models, which can serve as a research testbed for DT and system and system-of-systems optimization. This study explores the feasibility of this MBSE-enabled template by creating and simulating a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle via an Unmanned Aerial Vehicle (UAV). The objective of this template is to demonstrate how executable SysML diagrams are used to establish a collaborative working environment between multiple platforms to better convey system behavior, modifications, and analytics for various system stakeholders
    corecore