2 research outputs found

    A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning

    Get PDF
    In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, in IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare

    Real-Time Cloud-Based Health Tracking and Monitoring System in Designed Boundary for Cardiology Patients

    No full text
    Telemonitoring is not a new term, in information technology (IT), which has been employed to remotely monitor the health of patients that are located not in common places, such hospitals or medical centers. For that, wearable medical sensors, such as electrocardiography sensors, blood pressure sensors, and glucometer, have commonly been used to make possible to acquire the real-time information from the remotely located patients; therefore, the medical information is further carried, via the Internet, to perform medical diagnosis and the corresponding treatments. Like in other IT sectors, there has been tremendous progress accounted in medical sectors (and in telemonitoring systems) that changes the human life protection against several chronic diseases, and the patient’s medical information can be accessed wirelessly via Wi-Fi and cellular systems. Further, with the advents of cloud computing technology, medical systems are now more efficient and scalable in processing, such as storage and access, the medical information with minimal development costs. This study is also a piece of enhancement made to track and monitor the real-time medical information, bounded in authorized area, through the modeling of private cloud computing. The private cloud-based environment is designed, for patient health monitoring called bounded telemonitoring system, to acquire the real-time medical information of patients that resided in the boundary, inside medical wards and outside medical wards, of the medical center. A new wireless sensor network scenario is designed and modeled to keep or monitor the patients’ health information whole day, 24 hours. This research is a new secured sight towards medical information access and gives directions for future developments in the medical systems
    corecore