2 research outputs found

    Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    No full text

    Modelling and automatic control in solar membrane distillation: Fundamentals and proposals for its technological development

    Full text link
    [ES] La destilación por membranas es un proceso de separación impulsado térmicamente en fase de investigación. Esta tecnología destaca principalmente por la simplicidad del proceso y su baja temperatura de operación, lo que permite que pueda ser alimentada con energía solar de media-baja temperatura. Así, la destilación por membranas se ha convertido en una solución prometedora, eficiente y sostenible para desarrollar plantas de desalación de pequeño o mediano tamaño en lugares aislados con buenas condiciones de radiación. No obstante, para que esta tecnología pueda llegar a ser implementada a escala industrial se debe seguir investigando y mejorando aspectos relacionados tanto con el diseño de las membranas y de los módulos como con la propia operación de estos. En relación con la operación, el desarrollo de modelos y técnicas de control cobran un papel fundamental. En este trabajo se presenta una revisión de las técnicas de control y modelado aplicadas en este campo, describiendo las principales metodologías empleadas y los retos futuros que quedan por abordar, incluyendo además un ejemplo ilustrativo.[EN] Membrane distillation is a termally-driven separation process under investigation. This technology stands out for the simplicity of the process and for its low operating temperature, which allows it to be combined with low grade solar energy. Thus, membrane distillation has become a promising, effcient and sustainable solution for the development of small-medium stand-alone desalination facilities to be implemented in offgrids areas with good irradiance conditions. However, in order to develop this technology on an industrial scale, research must continue to improve aspects related to both the design of membranes and modules and their operation. Regarding the operation, the development of models and control techniques play a fundamental role. This paper presents a review of the control and modeling techniques applied in this field, describing the main methodologies employed and the future challenges to be addressed, also including an illustrative example.Este trabajo ha sido financiado con el Proyecto I+D+i del Plan Nacional DPI2017-85007-R del Ministerio de Ciencia, Innovacion y Universidades y Fondos FEDER. Juan D. Gil quiere ´ agradecer al Plan Propio de Investigacion y Transferencia de la ´ Universidad de Almer´ıa por la financiacion de su contrato pre- ´ doctoral.Gil, JD.; Roca, L.; Berenguel, M. (2020). Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico. Revista Iberoamericana de Automática e Informática industrial. 17(4):329-343. https://doi.org/10.4995/riai.2020.13122OJS329343174Abdallah, S. B., Frikha, N., Gabsi, S., 2013. Simulation of solar vacuum membrane distillation unit. Desalination 324, 87-92. https://doi.org/10.1016/j.desal.2013.06.001Alkhudhiri, A., Darwish, N., Hilal, N., 2012. Membrane distillation: A com- prehensive review. Desalination 287, 2-18. https://doi.org/10.1016/j.desal.2013.06.001Alsaadi, A. S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G. L., 2013. Modeling of air-gap membrane distillation process: A theoreti- cal and experimental study. Journal of Membrane Science 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049Amigo, J., Urtubia, R., Suárez, F., 2018. Exploring the interactions between hydrodynamics and fouling in membrane distillation systems-A multiscale approach using CFD. Desalination 444, 63-74. https://doi.org/10.1016/j.desal.2018.07.009Andrés-Mañas, J., Roca, L., Ruiz-Aguirre, A., Acién, F., Gil, J. D., Zaragoza, G., 2020a. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy 258, 114068. https://doi.org/10.1016/j.apenergy.2019.114068Andrés-Mañas, J., Ruiz-Aguirre, A., Acién, F., Zaragoza, G., 2020b. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 475, 114202. https://doi.org/10.1016/j.desal.2019.114202Åström, K. J., Hägglund, T., 2006. Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society Research Triangle.Banat, F., Jwaied, N., Rommel, M., Koschikowski, J., Wieghaus, M., 2007. Performance evaluation of the "large SMADES" autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 217 (1-3), 17-28. https://doi.org/10.1016/j.desal.2006.11.027Bendevis, P., Karam, A., Laleg-Kirati, T.-M., 2020. Optimal model-free control of solar thermal membrane distillation system. Computers & Chemical Engineering 133, 106622. https://doi.org/ 10.1016/j.compchemeng.2019.106622Boubakri, A., Hafiane, A., Bouguecha, S. A. T., 2014. Application of response surface methodology for modeling and optimization of membrane distillation desalination process. Journal of Industrial and Engineering Chemistry 20 (5), 3163-3169. https://doi.org/10.1016/j.jiec.2013.11.060Bouguecha, S. T., Boubakri, A., Aly, S. E., Al-Beirutty, M. H., Hamdi, M. M., 2016. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach. Water Science and Technology 74 (1), 87-98. https://doi.org/10.2166/wst.2016.126Camacho, E. F., Berenguel, M., Rubio, F. R., Martínez, D., 2012. Control of Solar Energy Systems. Springer. https://doi.org/10.1007/978-0-85729-916-1Camacho, E. F., Bordons, C., 2004. Model Predictive Control. Springer-Verlag Ltd, London.Cao, W., Liu, Q., Wang, Y., Mujtaba, I. M., 2016. Modeling and simulation of VMD desalination process by ANN. Computers & Chemical Engineering 84, 96-103. https://doi.org/10.1016/j.compchemeng.2015.08.019Chafidz, A., Al-Zahrani, S., Al-Otaibi, M. N., Hoong, C. F., Lai, T. F., Prabu, M., 2014. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 345, 36-49. https://doi.org/10.1016/j.desal.2014.04.017Chang, H., Wang, G.-B., Chen, Y.-H., Li, C.-C., Chang, C.-L., 2010. Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy 35 (12), 2714-2722. https://doi.org/10.1016/j.renene.2010.04.020Chen, Y.-H., Li, Y.-W., Chang, H., 2012. Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy 100, 193-204. https://doi.org/10.1016/j.apenergy.2012.03.003Cheng, D., Li, N., Zhang, J., 2018. Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chemical Engineering Research and Design 132, 697-713. https://doi.org/10.1016/j.cherd.2018.02.017Cipollina, A., Di Sparti, M., Tamburini, A., Micale, G., 2012. Development of a membrane distillation module for solar energy seawater desalination. Chemical Engineering Research and Design 90 (12), 2101-2121. https://doi.org/10.1016/j.cherd.2012.05.021Demuth, H. B., Beale, M. H., De Jess, O., Hagan, M. T., 2014. Neural network design. PWS Publishing Co.DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., Carpenter, D. O., 2015. Climate change and water scarcity: The case of Saudi Arabia. Annals of Global Health 81 (3), 342-353. https://doi.org/10.1016/j.aogh.2015.08.005Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., War- singer, D. M., Elimelech, M., 2018. Membrane distillation at the waterenergy nexus: Limits, opportunities, and challenges. Energy & Environmental Science 11 (5), 1177-1196. https://doi.org/10.1039/c8ee00291fDing, Z., Liu, L., El-Bourawi, M. S., Ma, R., 2005. Analysis of a solar-powered membrane distillation system. Desalination 172 (1), 27-40. https://doi.org/10.1016/j.desal.2004.06.195Dow, N., Duke, M., Zhang, J., O'Rielly, T., Li, J., Gray, S., Ostarcevic, E., Atherton, P., 2010. Demonstration of solar driven membrane distillation in remote Victoria. In: Australian Water Association (AWA) Ozwater Conference and Exhibition, Brisbane, Australia. Vol. 810.Duffie, J. A., Beckman, W. A., 2013. Solar engineering of thermal processes. John Wiley & Sons. https://doi.org/10.1002/9781118671603Eleiwi, F., Ghaffour, N., Alsaadi, A. S., Francis, L., Laleg-Kirati, T. M., 2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination 384, 1-11. https://doi.org/10.1016/j.desal.2016.01.004Elzahaby, A. M., Kabeel, A., Bassuoni, M., Elbar, A. R. A., 2016. Direct contact membrane water distillation assisted with solar energy. Energy Conversion and Management 110, 397-406. https://doi.org/10.1016/j.enconman.2015.12.046Esfandiari, A., Monjezi, A. H., Rezakazemi, M., Younas, M., 2019. Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Applied Thermal Engineering 163, 114391. https://doi.org/ 10.1016/j.applthermaleng.2019.114391Fadhil, S., Alsalhy, Q. F., Makki, H. F., Ruby-Figueroa, R., Marino, T., Criscuoli, A., Macedonio, F., Giorno, L., Drioli, E., Figoli, A., 2019. Seawater desalination using PVDF-HFP membrane in DCMD process: Assessment of operating condition by response surface method. Chemical Engineering Communications 206 (2), 237-246. https://doi.org/10.1080/00986445.2018.1483349Gabsi, S., Frikha, N., Chaouachi, B., 2013. Performance of a solar vacuum membrane distillation pilot plant, for seawater desalination in Mahares, Tunisia. International Journal of Water Resources and Arid Environments 2 (4), 213-217.Ghaffour, N., Soukane, S., Lee, J.-G., Kim, Y., Alpatova, A., 2019. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy 254, 113698. https://doi.org/10.1016/j.apenergy.2019.113698Gil, J. D., Á lvarez, J., Roca, L., Sánchez-Molina, J., Berenguel, M., Rodríguez, F., 2019a. Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse. Energy Conversion and Management 198, 111791. https://doi.org/10.1016/j.enconman.2019.111791Gil, J. D., Mendes, P. R., Andrade, G., Roca, L., Normey-Rico, J. E., Berenguel, M., 2019b. Hybrid NMPC applied to a solar-powered membrane distillation system. IFAC-PapersOnLine 52 (1), 124 - 129, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.048Gil, J. D., Roca, L., Ruiz-Aguirre, A., Zaragoza, G., Berenguel, M., 2018a. Optimal operation of a solar membrane distillation pilot plant via nonlinear model predictive control. Computers & Chemical Engineering 109, 151- 165. https://doi.org/ 10.1016/j.compchemeng.2017.11.012Gil, J. D., Roca, L., Zaragoza, G., Berenguel, M., 2018b. A feedback control system with reference governor for a solar membrane distillation pilot facility. Renewable Energy 120, 536-549. https://doi.org/10.1016/j.renene.2017.12.107Gil, J. D., Ruiz-Aguirre, A., Roca, L., Zaragoza, G., Berenguel, M., 2018c. Pre- diction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 445, 15- 28. https://doi.org/10.1016/j.desal.2018.07.022González, D., Amigo, J., Suárez, F., 2017. Membrane distillation: Perspectives for sustainable and improved desalination. Renewable and Sustainable Energy Reviews 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078Guillén-Burrieza, E., Alarcón-Padilla, D.-C., Palenzuela, P., Zaragoza, G., 2015. Techno-economic assessment of a pilot-scale plant for solar desalination based on existing plate and frame MD technology. Desalination 374, 70-80. https://doi.org/10.1016/j.desal.2015.07.014Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.-C., Palenzuela, P., Ibarra, M., Gernjak, W., 2011. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science 379 (1-2), 386-396. https://doi.org/10.1016/j.memsci.2011.06.009Guo, X., Albalawi, F., Laleg-Kirati, T.-M., 2020. Observer-based economic model predictive control for direct contact membrane distillation. Chemical Engineering Research and Design 156, 86-99. https://doi.org/10.1016/j.cherd.2020.01.027Gustafson, R. D., Murphy, J. R., Achilli, A., 2016. A stepwise model of direct contact membrane distillation for application to large-scale systems: Experimental results and model predictions. Desalination 378, 14-27. https://doi.org/0.1016/j.desal.2015.09.022Hayer, H., Bakhtiari, O., Mohammadi, T., 2015. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach. Journal of Industrial and Engineering Chemistry 21, 1379-1382. https://doi.org/10.1016/j.jiec.2014.06.009He, Q., Li, P., Geng, H., Zhang, C., Wang, J., Chang, H., 2014. Modeling and optimization of air gap membrane distillation system for desalination. Desalination 354, 68-75. https://doi.org/10.1016/j.desal.2014.09.022Hill, W. J., Hunter, W. G., 1966. A review of response surface methodology: A literature survey. Technometrics 8 (4), 571-590. https://doi.org/10.2307/1266632Hitsov, I., Eykens, L., De Schepper, W., De Sitter, K., Dotremont, C., Nopens, I., 2017. Full-scale direct contact membrane distillation (DCMD) model including membrane compaction effects. Journal of Membrane Science 524, 245-256. https://doi.org/10.1016/j.memsci.2016.11.044Hitsov, I., Maere, T., De Sitter, K., Dotremont, C., Nopens, I., 2015. Modelling approaches in membrane distillation: A critical review. Separation and Purification Technology 142, 48-64. https://doi.org/10.1016/j.seppur.2014.12.026Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., Kang, S.-m., 2018. The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076Karam, A. M., Alsaadi, A. S., Ghaffour, N., Laleg-Kirati, T. M., 2017. Analysis of direct contact membrane distillation based on a lumped-parameter dyna- mic predictive model. Desalination 402, 50-61. https://doi.org/0.1016/j.desal.2016.09.002Karam, A. M., Laleg-Kirati, T. M., 2015. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking. In: 2015 IEEE Conference on Control Applications (CCA). IEEE, pp. 1618-1623. https://doi.org/10.1109/CCA.2015.7320841Karam, A. M., Laleg-Kirati, T. M., 2016. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis. Journal of Process Control 47, 87-97. https://doi.org/10.1016/j.jprocont.2016.08.001Karanikola, V., Corral, A. F., Jiang, H., Saéz, A. E., Ela, W. P., Arnold, R. G., 2015. Sweeping gas membrane distillation: numerical simulation of mass and heat transfer in a hollow fiber membrane module. Journal of Membrane Science 483, 15-24. https://doi.org/10.1016/j.memsci.2015.02.010Khalifa, A. E., Lawal, D. U., 2016. Application of response surface and Taguchi optimization techniques to air gap membrane distillation for water desalination: A comparative study. Desalination and Water Treatment 57 (59), 28513-28530. https://doi.org/0.1080/19443994.2016.1189850Khayet, M., Cojocaru, C., 2012a. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 287, 138-145. https://doi.org/10.1016/j.desal.2011.09.017Khayet, M., Cojocaru, C., 2012b. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Separation and Purification Technology 86, 171-182. https://doi.org/10.1016/j.seppur.2011.11.001Khayet, M., Cojocaru, C., 2013. Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination 308, 102-110. https://doi.org/10.1016/j.desal.2012.06.023Khayet, M., Cojocaru, C., García-Payo, C., 2007. Application of response sur- face methodology and experimental design in direct contact membrane distillation. Industrial & Engineering Chemistry Research 46 (17), 5673-5685. https://doi.org/10.1021/ie070446pKhayet, M., Matsuura, T., 2011. Membrane distillation: Principles and applications. Elsevier. https://doi.org/10.1016/B978-0-444-53126-1.10012-0Kim, Y., Thu, K., Choi, S.-H., 2015. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367, 161- 171. https://doi.org/10.1016/j.desal.2015.04.003Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., Rodríguez, J. R. B., 2009. Experimental investigations on solar driven standalone membrane distillation systems for remote areas. Desalination 248 (1- 3), 125-131. https://doi.org/10.1016/j.desal.2008.05.047Luo, A., Lior, N., 2016. Critical review of membrane distillation performance criteria. Desalination and Water Treatment 57 (43), 20093-20140. https://doi.org/10.1080/19443994.2016.1152637Mercader, P., Cánovas, C., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática industrial 16 (1), 15-25. https://doi.org/10.4995/riai.2018.9034Miladi, R., Frikha, N., Kheiri, A., Gabsi, S., 2019. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Conversion and Management 185, 143-154. https://doi.org/10.1016/j.enconman.2019.02.011Mohammadi, T., Kazemi, P., Peydayesh, M., 2015. Optimization of vacuum membrane distillation parameters for water desalination using Box- Behnken design. Desalination and Water Treatment 56 (9), 2306-2315. https://doi.org/10.1080/19443994.2014.961173Perfilov, V., Fila, V., Marcano, J. S., 2018. A general predictive model for sweeping gas membrane distillation. Desalination 443, 285-306. https://doi.org/10.1016/j.desal.2018.06.007Porrazzo, R., Cipollina, A., Galluzzo, M., Micale, G., 2013. A neural network- based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Computers & Chemical Engineering 54, 79-96. https://doi.org/ 10.1016/j.compchemeng.2013.03.015Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimización en tiempo real utilizando la metodología de adaptación de modificadores. Revista Iberoamericana de Automática e Informática industrial 15 (2), 133-144. https://doi.org/10.4995/riai.2017.8846Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial 15 (3), 327-338. https://doi.org/10.4995/riai.2018.8944Ruiz-Aguirre, A., Alarcón-Padilla, D.-C., Zaragoza, G., 2015. Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalination and Water Treatment 55 (10), 2777-2785. https://doi.org/10.1080/19443994.2014.946711Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2017. Modeling and optimization of a commercial permeate gap spiral wound membrane distillation module for seawater desalination. Desalination 419, 160-168. https://doi.org/10.1016/j.desal.2017.06.019Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2018. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology 205, 212-222. https://doi.org/10.1016/j. seppur.2018.05.044Ruiz-Aguirre, A., Andrés-Mañas, J. A., Zaragoza, G., 2019. Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes 9 (6), 69. https://doi.org/10.3390/membranes9060069Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., et al., 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 111 (9), 3245-3250. https://doi.org/10.1073/pnas.1222460110Shirazian, S., Alibabaei, M., 2017. Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Computing and Applications 28 (8), 2099-2104. https://doi.org/10.1007/s00521-016-2184-0Tang, N., Zhang, H., Wang, W., 2011. Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution. Desalination 274 (1-3), 120-129. https://doi.org/10.1016/j.desal.2011.01.078Tavakolmoghadam, M., Safavi, M., 2012. An optimized neural network model of desalination by vacuum membrane distillation using genetic algorithm. Procedia Engineering 42, 106-112. https://doi.org/10.1016/j.proeng.2012.07.400Thomas, N., Mavukkandy, M. O., Loutatidou, S., Arafat, H. A., 2017. Mem- brane distillation research & implementation: Lessons from the past five decades. Separation and Purification Technology 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069Wang, P., Chung, T.-S., 2015. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Chronicle 38 (4), 104-8.Winter, D., 2015. Membrane distillation: A thermodynamic, technological and economic analysis. Shaker Verlag.Yang, C., Peng, X., Zhao, Y., Wang, X., Fu, J., Liu, K., Li, Y., Li, P., 2020. Prediction model to analyze the performance of VMD desalination process. Computers & Chemical Engineering 132, 106619. https://doi.org/10.1016/j.compchemeng.2019.106619Yu, H., Yang, X., Wang, R., Fane, A. G., 2011. Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with lamin
    corecore