22,543 research outputs found

    An a posteriori verification method for generalized real-symmetric eigenvalue problems in large-scale electronic state calculations

    Full text link
    An a posteriori verification method is proposed for the generalized real-symmetric eigenvalue problem and is applied to densely clustered eigenvalue problems in large-scale electronic state calculations. The proposed method is realized by a two-stage process in which the approximate solution is computed by existing numerical libraries and is then verified in a moderate computational time. The procedure returns intervals containing one exact eigenvalue in each interval. Test calculations were carried out for organic device materials, and the verification method confirms that all exact eigenvalues are well separated in the obtained intervals. This verification method will be integrated into EigenKernel (https://github.com/eigenkernel/), which is middleware for various parallel solvers for the generalized eigenvalue problem. Such an a posteriori verification method will be important in future computational science.Comment: 15 pages, 7 figure

    Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems

    Full text link
    We propose a verified computation method for partial eigenvalues of a Hermitian generalized eigenproblem. The block Sakurai-Sugiura Hankel method, a contour integral-type eigensolver, can reduce a given eigenproblem into a generalized eigenproblem of block Hankel matrices whose entries consist of complex moments. In this study, we evaluate all errors in computing the complex moments. We derive a truncation error bound of the quadrature. Then, we take numerical errors of the quadrature into account and rigorously enclose the entries of the block Hankel matrices. Each quadrature point gives rise to a linear system, and its structure enables us to develop an efficient technique to verify the approximate solution. Numerical experiments show that the proposed method outperforms a standard method and infer that the proposed method is potentially efficient in parallel.Comment: 15 pages, 4 figures, 1 tabl

    Localization theorems for nonlinear eigenvalue problems

    Full text link
    Let T : \Omega \rightarrow \bbC^{n \times n} be a matrix-valued function that is analytic on some simply-connected domain \Omega \subset \bbC. A point λΩ\lambda \in \Omega is an eigenvalue if the matrix T(λ)T(\lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.Comment: Submitted to SIMAX. 22 pages, 11 figure

    Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

    Get PDF
    Super-resolution is a fundamental task in imaging, where the goal is to extract fine-grained structure from coarse-grained measurements. Here we are interested in a popular mathematical abstraction of this problem that has been widely studied in the statistics, signal processing and machine learning communities. We exactly resolve the threshold at which noisy super-resolution is possible. In particular, we establish a sharp phase transition for the relationship between the cutoff frequency (mm) and the separation (Δ\Delta). If m>1/Δ+1m > 1/\Delta + 1, our estimator converges to the true values at an inverse polynomial rate in terms of the magnitude of the noise. And when m<(1ϵ)/Δm < (1-\epsilon) /\Delta no estimator can distinguish between a particular pair of Δ\Delta-separated signals even if the magnitude of the noise is exponentially small. Our results involve making novel connections between {\em extremal functions} and the spectral properties of Vandermonde matrices. We establish a sharp phase transition for their condition number which in turn allows us to give the first noise tolerance bounds for the matrix pencil method. Moreover we show that our methods can be interpreted as giving preconditioners for Vandermonde matrices, and we use this observation to design faster algorithms for super-resolution. We believe that these ideas may have other applications in designing faster algorithms for other basic tasks in signal processing.Comment: 19 page
    corecore