4,075 research outputs found

    Conduit Artery Photoplethysmography and its Applications in the Assessment of Hemodynamic Condition

    Get PDF
    Elektroniskā versija nesatur pielikumusPromocijas darbā ir izstrādāta maģistrālo artēriju fotopletizmogrāfijas (APPG) metode hemodinamisko parametru novērtējumam. Pretstatot referentām metodēm, demonstrēta iespēja iegūt arteriālo elasticitāti raksturojošus parametrus, izmantojot APPG signāla formas analīzi (atvasinājuma un signāla formas aproksimācijas parametri) un ar APPG iegūtu pulsa izplatīšanās ātrumu unilaterālā gultnē. Izstrādāta APPG reģistrācijas standartizācija, mērījuma laikā nodrošinot optimālo sensora piespiedienu. Šis paņēmiens validēts ārējās ietekmes (sensora piespiediens) un hemodinamisko stāvokļu (perifērā vaskulārā pretestība) izmaiņās femorālā APPG signālā, identificējot būtiskākos faktorus APPG pielietojumos. Veikta APPG validācija asinsrites fizioloģijas un preklīniskā pētījumā demonstrējot APPG potenciālu pētniecībā un diagnostikā. Izstrādāts pulsa formas parametrizācijas paņēmiens, saistot fizioloģiskās un aproksimācijas modeļa komponentes. Atslēgas vārdi: maģistrālā artērija, fotopletizmogrāfija, arteriālā elasticitāte, metodes standartizācija, pulsa formas kvantifikācija, vazomocija, sepseThe doctoral thesis features the development of a conduit artery photoplethysmography technique (APPG) for the evaluation of hemodynamic parameters. Contrasting referent methods, the work demonstrates the possibility to receive parameters characterizing the arterial stiffness by means of APPG waveform analysis (derivation and waveform approximation parameters) and APPG obtained pulse wave velocity in a unilateral vascular bed. In this work APPG standardization technique was developed providing optimal probe contact pressure conditions. It was validated by altering the external factors (probe contact pressure) and hemodynamic conditions (peripheral vascular resistance) on the femoral APPG waveform identifying the key factors in APPG applications. The APPG validation in blood circulation physiology and a pre-clinical trial was performed demonstrating APPG potential in the extension of applications. An arterial waveform parameterization was developed relating the physiological wave to approximation model components. Keywords: conduit artery, photoplethysmography, arterial stiffness, method standardization, waveform parametrization, vasomotion, sepsi

    Doppler ultrasound measurement of Arterial Wall Motion (AWM)

    Get PDF

    Toward simultaneous flow and pressure assessment in large arteries using non-invasive ultrasound

    Get PDF
    Ultrageluid wordt in de kliniek vaak toegepast om op een niet-invasieve manier geometrische eigenschappen van grote vaten, zoals diameter en wanddikte en hemodynamische variabelen zoals bloedstroomsnelheid te bepalen. Om biomechanische parameters en hemodynamische variabelen die karakteristiek zijn voor de ontwikkeling van hart en vaatziekten, zoals compliantie en impedantie, te bepalen, is de bepaling van geometrie en bloedstroomsnelheid alleen onvoldoende. Daarvoor is een gelijktijdige en bij voorkeur niet invasieve meting van debiet en druk vereist. Met de huidige ultrageluidstechnieken is het onmogelijk om gelijktijdig debiet en druk nauwkeurig te bepalen. Debiet wordt vaak bepaald aan de hand van twee metingen: een diametermeting (geluidsbundel loodrecht op het vat) en een meting van de maximale axiale bloedstroomsnelheid met behulp van Doppler ultrageluid (geluidsbundel onder een hoek met het vat). Door een theoretische snelheidsverdeling aan te nemen, bijvoorbeeld een Poiseuille of Womersley profiel, wordt hieruit vervolgens het debiet berekend. In-vivo zijn vaten zelden recht: vaten zijn taps toelopend, gekromd en hebben vertakkingen. Dientengevolge zijn er secundaire snelheidscomponenten aanwezig die de axiale snelheidverdeling be¨invloeden. Dit resulteert in asymmetrische axiale snelheidsverdelingen. Omdat de aangenomen snelheidsverdelingen slechts geldig zijn voor rechte vaten, geeft een dusdanige bepaling een onnauwkeurige afschatting van het debiet. Verder is het onmogelijk om gelijktijdig met de snelheidsmeting nauwkeurig de wandbeweging te bepalen, waardoor de debietmeting nog verder verslechtert en het gelijktijdig bepalen van druk uit wandbeweging en debiet onmogelijk wordt. In dit onderzoek worden Particle Image Velocimetry (PIV) gebaseerde algoritmen toegepast op RF-data die verkregen zijn met behulp van een commercieel beschikbaar, voor klinische toepassing goedgekeurd ultrageluidssysteem. Dit maakt het mogelijk om snelheidscomponenten loodrecht op de ultrageluidbundel, en dus gelijktijdig wandpositie en axiale snelheid nauwkeurig te meten. Deze snelheidsmeettechniek is gevalideerd door metingen van het snelheidsprofiel in een experimentele opstelling te vergelijken met resultaten van computational fluid dynamics (CFD) berekeningen, voor stationaire en instationaire stromingen in een recht vat. Er werd een goede overeenstemming gevonden voor het axiale snelheidsprofiel. Integratie van het gemeten axiale snelheidsprofiel leverde een nauwkeurige afschatting van het debiet op. Omdat in de praktijk de meeste vaten gekromd zijn is de snelheids meetmethode vervolgens gevalideerd voor toepassing op stromingen in dit soort geometrieën. In de experimentele opstelling zijn axiale snelheidsprofielen gemeten voor stationaire en instationaire stroming in kromme buizen. Opnieuw zijn de gemeten profielen vergeleken met resultaten van CFD-berekeningen. Ook hier werd een goede overeenstemming gevonden tussen de gemeten profielen en de met behulp van CFD berekende snelheidsprofielen. Om nauwkeurig debiet te bepalen op basis van de gemeten asymmetrische axiale snelheidsprofielen, is een analytische en een op CFD gebaseerde studie gedaan naar stroming in kromme vaten. Deze studie heeft geresulteerd in de cos ¿-methode. Toepassing van de cos ¿-methode op de gemeten asymmetrische axiale profielen gaf een nauwkeurige afschatting van het debiet, voor stationaire en instationaire flow. Vergeleken met de huidig toegepaste afschattingsmethode voor het debiet werd een grote verbetering gevonden. Voor een fysiologisch relevant debiet gaf de cos ¿-methode een gemiddelde afwijking van 5% ten opzichte van het referentiedebiet terwijl deze voor de huidig toegepaste Poiseuille en Womersley benaderingen gelijk was aan 20%. Tenslotte is getracht om de lokale druk te bepalen uit enkel een niet-invasieve ultrageluidsmeting door een meting van de diameter te combineren met een gelijktijdige bepaling van de lokale compliantie. De lokale compliantie is bepaald door de lokale golfsnelheid (PWV) te meten. Verschillende methoden om lokaal de PWV te meten zijn getest in de experimentele opstelling. Hieruit bleek dat de QA-methode, een methode waarbij de lokale PWV bepaald wordt uit de verhouding tussen veranderingen in debiet en veranderingen in oppervlak van de dwarsdoorsnede van het vat, het mogelijk maakt om lokaal nauwkeurig PWV te meten. Door de PWV meting te combineren met een gelijktijdige meting van de diameter werd de lokale druk nauwkeurig afgeschat. Dit geeft aan dat het haalbaar is om op een niet-invasieve manier in-vivo druk te meten met behulp van ultrageluid. Hoewel de meettechnieken besproken in deze studie alleen getest zijn voor toepassing in een gecontroleerde experimentele omgeving, zijn de vooruitzichten voor klinische toepassing veelbelovend. De gepresenteerde methoden maken het mogelijk om de toestand van het vaatbed nauwkeuriger te bepalen, waardoor in de toekomst informatie verkregen kan worden over het effect van therapeutische ingrepen en factoren ge¨identificeerd kunnen worden die karakteristiek zijn voor de ontwikkeling van hart- en vaatziekten

    Validation of a 1D Algorithm That Measures Pulse Wave Velocity to Estimate Compliance in Blood Vessels

    Get PDF
    The purpose of this research is to determine if it is possible to validate the new 1D method for measuring pulse wave velocity in the aorta in vivo and estimate compliance. Arterial pressure and blood flow characterize the traveling of blood from the heart to the arterial system and have played a significant role in the evaluation of cardiovascular diseases. Blood vessel distensibility can give some information on the evolution of cardiovascular disease. A patient’s aorta cannot be explanted to measure compliance; therefore we are using a flow phantom model to validate the 1D pulse wave velocity technique to estimate compliance

    Methods and Algorithms for Cardiovascular Hemodynamics with Applications to Noninvasive Monitoring of Proximal Blood Pressure and Cardiac Output Using Pulse Transit Time

    Get PDF
    Advanced health monitoring and diagnostics technology are essential to reduce the unrivaled number of human fatalities due to cardiovascular diseases (CVDs). Traditionally, gold standard CVD diagnosis involves direct measurements of the aortic blood pressure (central BP) and flow by cardiac catheterization, which can lead to certain complications. Understanding the inner-workings of the cardiovascular system through patient-specific cardiovascular modeling can provide new means to CVD diagnosis and relating treatment. BP and flow waves propagate back and forth from heart to the peripheral sites, while carrying information about the properties of the arterial network. Their speed of propagation, magnitude and shape are directly related to the properties of blood and arterial vasculature. Obtaining functional and anatomical information about the arteries through clinical measurements and medical imaging, the digital twin of the arterial network of interest can be generated. The latter enables prediction of BP and flow waveforms along this network. Point of care devices (POCDs) can now conduct in-home measurements of cardiovascular signals, such as electrocardiogram (ECG), photoplethysmogram (PPG), ballistocardiogram (BCG) and even direct measurements of the pulse transit time (PTT). This vital information provides new opportunities for designing accurate patient-specific computational models eliminating, in many cases, the need for invasive measurements. One of the main efforts in this area is the development of noninvasive cuffless BP measurement using patient’s PTT. Commonly, BP prediction is carried out with regression models assuming direct or indirect relationships between BP and PTT. However, accounting for the nonlinear FSI mechanics of the arteries and the cardiac output is indispensable. In this work, a monotonicity-preserving quasi-1D FSI modeling platform is developed, capable of capturing the hyper-viscoelastic vessel wall deformation and nonlinear blood flow dynamics in arbitrary arterial networks. Special attention has been dedicated to the correct modeling of discontinuities, such as mechanical properties mismatch associated with the stent insertion, and the intertwining dynamics of multiscale 3D and 1D models when simulating the arterial network with an aneurysm. The developed platform, titled Cardiovascular Flow ANalysis (CardioFAN), is validated against well-known numerical, in vitro and in vivo arterial network measurements showing average prediction errors of 5.2%, 2.8% and 1.6% for blood flow, lumen cross-sectional area, and BP, respectively. CardioFAN evaluates the local PTT, which enables patient-specific calibration and its application to input signal reconstruction. The calibration is performed based on BP, stroke volume and PTT measured by POCDs. The calibrated model is then used in conjunction with noninvasively measured peripheral BP and PTT to inversely restore the cardiac output, proximal BP and aortic deformation in human subjects. The reconstructed results show average RMSEs of 1.4% for systolic and 4.6% for diastolic BPs, as well as 8.4% for cardiac output. This work is the first successful attempt in implementation of deterministic cardiovascular models as add-ons to wearable and smart POCD results, enabling continuous noninvasive monitoring of cardiovascular health to facilitate CVD diagnosis

    Impact of alpha adrenergic and myogenic control on forearm vasomotor properties

    Get PDF
    We tested the hypotheses that forearm vascular compliance (C) but not resistance (R) would be influenced by myogenic stimuli, and changing (A) forearm transmural pressure (TP) would influence the effect of a-adrenergic input on C and R. Continuous forearm blood flow was measured during Norepinephrine (NE; a-agonist) and during concurrent NE and Phentolamine (PH; a-antagonist) infusion with the arm above and below heart level (n=10). C was inversely related to TP (p\u3c0.05). NE decreased C and increased R (p\u3c0.05). PH abolished these responses. The effect of NE on AC was greater with the arm above versus below heart level (p\u3c0.05), while AR was only observed with the arm below the heart (p\u3c0.05). Conclusions: Myogenic changes affect forearm vascular C independent of changes in R. Alpha -adrenergic activation reduces C and increases R. Furthermore, with NE, AC requires a high starting value of C, while AR occurs under high T

    Dynamic Measures of Arterial Stiffness in a Rodent Model

    Get PDF
    Cardiovascular disease is one of the leading causes of death in Canada. Arterial stiffness is an important factor in the pathogenesis of cardiovascular disease. Cardiac failure, hypertension, renal failure, and dementia have all been linked to arterial stiffness. The arterial system is designed to dampen the pulses of blood from the heart's left ventricle and distribute the blood forward as steady flow in the small vessels. The pulse-dampening ability of the arterial system is reduced with age when the elastic fibers in the arterial wall degrade and fracture. The arterial stiffening process can accelerate from deposition of minerals within the arterial wall, such as calcium, from the endothelial layer becoming compromised or from fibrosis secondary to inflammation or turbulence. Arterial stiffness can be assessed post-mortem by microscopic examination of the arterial wall. However, for use in dynamic experiments and for therapeutic intervention, several ante-mortem techniques have been developed: pulse wave velocity (PWV), pulse waveform analysis (PWA), wave separation analysis (WSA), and carotid ultrasonography. Rats are important models for cardiovascular disease, toxicology, and pharmacological studies because of their convenient size and short life cycle. However, PWA and WSA have not been shown to be valid approaches for studying arterial stiffness in rat peripheral arteries. In this thesis, dynamic in vivo methods for PWA and WSA in rat peripheral arteries were developed to provide accurate measures of arterial stiffness. Software specific to the rat vasculature, PWanalyze and WSanalyze, was developed to measure PWA and WSA parameters, respectively. A comparison of these PWA and WSA methods in rat peripheral arteries was performed by creating a range of arterial stiffnesses through acute and chronic experiments. Arterial stiffness was measured in the femoral artery by a novel PWA parameter, the minimum time derivative of blood pressure dp/dt(min), as effectively as the established parameter the maximum time derivative of blood pressure dp/dt(max). A new method of WSA in femoral arteries was developed. Backward wave amplitude measured in the aorta was shown to increase as arteries stiffened and decrease as arteries relaxed with acute vasoactive drug injections. These experiments showed that dp/dt(min) and WSA are valid approaches to use when studying arterial stiffness in rats
    corecore