2 research outputs found

    Solving parametric systems of polynomial equations over the reals through Hermite matrices

    Full text link
    We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let f=(f1,,fm)Q[y][x]f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x] with y=(y1,,yt)y = (y_1, \ldots, y_t) and x=(x1,,xn)x = (x_1, \ldots, x_n), VCt+nV\subset \mathbb{C}^{t+n} be the algebraic set defined by ff and π\pi be the projection (y,x)y(y, x) \to y. Under the assumptions that ff admits finitely many complex roots for generic values of yy and that the ideal generated by ff is radical, we solve the following problem. On input ff, we compute semi-algebraic formulas defining semi-algebraic subsets S1,,SlS_1, \ldots, S_l of the yy-space such that i=1lSi\cup_{i=1}^l S_i is dense in Rt\mathbb{R}^t and the number of real points in Vπ1(η)V\cap \pi^{-1}(\eta) is invariant when η\eta varies over each SiS_i. This algorithm exploits properties of some well chosen monomial bases in the algebra Q(y)[x]/I\mathbb{Q}(y)[x]/I where II is the ideal generated by ff in Q(y)[x]\mathbb{Q}(y)[x] and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets SiS_i by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When ff satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in Q\mathbb{Q} and the degree of the output polynomials. Let dd be the maximal degree of the fif_i's and D=n(d1)dnD = n(d-1)d^n, we prove that, on a generic f=(f1,,fn)f=(f_1,\ldots,f_n), one can compute those semi-algebraic formulas with O ((t+Dt)23tn2t+1d3nt+2(n+t)+1)O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1}) operations in Q\mathbb{Q} and that the polynomials involved have degree bounded by DD. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art

    Abelian Integral Method and its Application

    Get PDF
    Oscillation is a common natural phenomenon in real world problems. The most efficient mathematical models to describe these cyclic phenomena are based on dynamical systems. Exploring the periodic solutions is an important task in theoretical and practical studies of dynamical systems. Abelian integral is an integral of a polynomial differential 1-form over the real ovals of a polynomial Hamiltonian, which is a basic tool in complex algebraic geometry. In dynamical system theory, it is generalized to be a continuous function as a tool to study the periodic solutions in planar dynamical systems. The zeros of Abelian integral and their distributions provide the number of limit cycles and their locations. In this thesis, we apply the Abelian integral method to study the limit cycles bifurcating from the periodic annuli for some hyperelliptic Hamiltonian systems. For two kinds of quartic hyperelliptic Hamiltonian systems, the periodic annulus is bounded by either a homoclinic loop connecting a nilpotent saddle, or a heteroclinic loop connecting a nilpotent cusp to a hyperbolic saddle. For a quintic hyperelliptic Hamiltonian system, the periodic annulus is bounded by a more degenerate heteroclinic loop, which connects a nilpotent saddle to a hyperbolic saddle. We bound the number of zeros of the three associated Abelian integrals constructed on the periodic structure by employing the combination technique developed in this thesis and Chebyshev criteria. The exact bound for each system is obtained, which is three. Our results give answers to the open questions whether the sharp bound is three or four. We also study a quintic hyperelliptic Hamiltonian system with two periodic annuli bounded by a double homoclinic loop to a hyperbolic saddle, one of the periodic annuli surrounds a nilpotent center. On this type periodic annulus, the exact number of limit cycles via Poincar{\\u27e} bifurcation, which is one, is obtained by analyzing the monotonicity of the related Abelian integral ratios with the help of techniques in polynomial boundary theory. Our results give positive answers to the conjecture in a previous work. We also extend the methods of Abelian integrals to study the traveling waves in two weakly dissipative partial differential equations, which are a perturbed, generalized BBM equation and a cubic-quintic nonlinear, dissipative Schr\ {o}dinger equation. The dissipative PDEs are reduced to singularly perturbed ODE systems. On the associated critical manifold, the Abelian integrals are constructed globally on the periodic structure of the related Hamiltonians. The existence of solitary, kink and periodic waves and their coexistence are established by tracking the vanishment of the Abelian integrals along the homoclinic loop, heteroclinic loop and periodic orbits. Our method is novel and easily applied to solve real problems compared to the variational analysis
    corecore