888 research outputs found

    Sampling from Stochastic Finite Automata with Applications to CTC Decoding

    Full text link
    Stochastic finite automata arise naturally in many language and speech processing tasks. They include stochastic acceptors, which represent certain probability distributions over random strings. We consider the problem of efficient sampling: drawing random string variates from the probability distribution represented by stochastic automata and transformations of those. We show that path-sampling is effective and can be efficient if the epsilon-graph of a finite automaton is acyclic. We provide an algorithm that ensures this by conflating epsilon-cycles within strongly connected components. Sampling is also effective in the presence of non-injective transformations of strings. We illustrate this in the context of decoding for Connectionist Temporal Classification (CTC), where the predictive probabilities yield auxiliary sequences which are transformed into shorter labeling strings. We can sample efficiently from the transformed labeling distribution and use this in two different strategies for finding the most probable CTC labeling

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure
    • …
    corecore