869,923 research outputs found

    Seasonal measurements of total OH reactivity fluxes, total ozone loss rates and missing emissions from Norway spruce in 2011 [Discussion paper]

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the Comparative Reactivity Method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel separate VOC emission rates were monitored by a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature driven algorithm matched the diel course much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the comparative reactivity method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel VOC emission rates were monitored by a second proton-transfer-reaction mass spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only-dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only-dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature-driven algorithm matched the diel variation of total OH reactivity emission rates much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    REACTIVITY OF CHLOROPHYLL a/b-PROTEINS AND MICELLAR TRITON X-100 COMPLEXES OF CHLOROPHYLLS a OR b WITH BOROHYDRIDE

    Get PDF
    The reaction of several plant chlorophyll-protein complexes with NaBH4 has been studied by absorption spectroscopy. In all the complexes studied, chlorophyll b is more reactive than Chi a, due to preferential reaction of its formyl substituent at C-7. The complexes also show large variations in reactivity towards NaBH4 and the order of reactivity is: LHCI > PSII complex > LHCII > PSI > P700 (investigated as a component of PSI). Differential pools of the same type of chlorophyll have been observed in several complexes. Parallel work was undertaken on the reactivity of micellar complexes of chlorophyll a and of chlorophyll b with NaBH4 to study the effect of aggregation state on this reactivity. In these complexes, both chlorophyll a and b show large variations in reactivity in the order monomer > oligomer > polymer with chlorophyll b generally being more reactive than chlorophyll a. It is concluded that aggregation decreases the reactivity of chlorophylls towards NaBH4 in vitro, and may similarly decrease reactivity in naturally-occurring chlorophyll-protein complexes

    Reactivity of Nellore steers in two feedlot housing systems and its relationship with plasmatic cortisol

    Get PDF
    To evaluate reactivity to assess the temperament of Nellore steers in two feedlot housing systems (group pen or individual pen) and its relationship with plasmatic cortisol, 36 experimental units were observed five times at 28-day intervals of weight management during a 112-day feedlot confinement. A reactivity score scale ranging from 1 to 5 was applied when an animal was in the chute system. To the calmest animal, a reactivity score of 1 was ascribed and to the most agitated, 5. Blood samples were collected for cortisol analysis. No differences were found in reactivity and feedlot system. There was a relationship noted between reactivity and feedlot time in both housing systems (Pb0.01). There was a relation between reactivity and cortisol levels for group animals (P=0.0616) and for individual ones (Pb0.01). Cortisol levels varied among housing systems (Pb0.01). Feedlot time influenced the cortisol levels (Pb0.09 individual; Pb0.01 group) and when variable time was included, these levels changed, decreasing in the group pen and increasing in individual pens. The continuous handling reduces reactivity and plasmatic cortisol, and group pen system seems to be less stressfully than individual pens

    Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity

    Get PDF
    Indexación: Web of ScienceTheoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic and nucleophilic Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.http://www.mdpi.com/1420-3049/21/6/74

    Child maltreatment and autonomic nervous system reactivity: identifying dysregulated stress reactivity patterns by using the biopsychosocial model of challenge and threat.

    Get PDF
    ObjectiveDisruptions in stress response system development have been posited as mechanisms linking child maltreatment (CM) to psychopathology. Existing theories predict elevated sympathetic nervous system reactivity after CM, but evidence for this is inconsistent. We present a novel framework for conceptualizing stress reactivity after CM that uses the biopsychosocial model of challenge and threat. We predicted that in the context of a social-evaluative stressor, maltreated adolescents would exhibit a threat pattern of reactivity, involving sympathetic nervous system activation paired with elevated vascular resistance and blunted cardiac output (CO) reactivity.MethodsA sample of 168 adolescents (mean age =14.9 years) participated. Recruitment targeted maltreated adolescents; 38.2% were maltreated. Electrocardiogram, impedance cardiography, and blood pressure were acquired at rest and during an evaluated social stressor (Trier Social Stress Test). Pre-ejection period (PEP), CO, and total peripheral resistance reactivity were computed during task preparation, speech delivery, and verbal mental arithmetic. Internalizing and externalizing symptoms were assessed.ResultsMaltreatment was unrelated to PEP reactivity during preparation or speech, but maltreated adolescents had reduced PEP reactivity during math. Maltreatment exposure (F(1,145) = 3.8-9.4, p = .053-<.001) and severity (β = -0.10-0.12, p = .030-.007) were associated with significantly reduced CO reactivity during all components of the stress task and marginally associated with elevated total peripheral resistance reactivity (F(1,145) = 3.8-9.4; p = .053-<.001 [β = 0.07-0.11] and p = .11-.009, respectively). Threat reactivity was positively associated with externalizing symptoms.ConclusionsCM is associated with a dysregulated pattern of physiological reactivity consistent with theoretical conceptualizations of threat but not previously examined in relation to maltreatment, suggesting a more nuanced pattern of stress reactivity than predicted by current theoretical models

    Life events and acute cardiovascular reactions to mental stress: a cohort study

    Get PDF
    Objective: This study addressed the issue of whether frequent exposure to life events is associated with aggravation or blunting of cardiovascular reactions to acute mental stress. Methods: In a substantial cohort of 585 healthy young adults, systolic and diastolic blood pressure and pulse rate were recorded at rest and in response to a mental arithmetic stress task. Participants indicated, from a list of 50 events, those they had experienced in the last year. Results: There was an overall association between life events and blunted cardiovascular reactivity that was driven by variations in the frequency of exposure to desirable events. The total number of events and the number of personal events were negatively associated with systolic blood pressure and pulse rate reactions to acute stress, whereas the number of work-related events was negatively associated with diastolic blood pressure and pulse rate reactivity. The negative association between total events and systolic blood pressure reactivity was stronger for women than men, whereas men exposed to frequent undesirable events showed enhanced diastolic blood pressure reactivity. The blunting of pulse rate reactivity associated with frequent personal life events was evident particularly for those who had a relatively large number of close friends. Conclusions: The nature and extent of the association between life events exposure and stress reactivity in young adults depends on the valence of the events together with the sex of the individual and their social network size

    Are Large Physiological Reactions to Acute Psychological Stress Always Bad for Health?

    Get PDF
    How we react physiologically to stress has long been considered to have implications for our health. There is now persuasive evidence that individuals who show large cardiovascular reactions to stress are at increased risk of developing cardiovascular disease, particularly hypertension. By implication, low reactivity is protective or benign. However, there is recent evidence that low reactivity may predict elevated risk for a range of adverse health outcomes, such as depression, obesity, poor self-reported health, and compromised immunity. In addition, low cortisol and cardiovascular reactivity may be a characteristic of individuals with addictions to tobacco and alcohol, as well as those at risk of addiction and those who relapse from abstinence. Our ideas about reactivity may have to be revised in the light of such findings
    corecore