7,966 research outputs found

    Modeling Cooperative Navigation in Dense Human Crowds

    Full text link
    For robots to be a part of our daily life, they need to be able to navigate among crowds not only safely but also in a socially compliant fashion. This is a challenging problem because humans tend to navigate by implicitly cooperating with one another to avoid collisions, while heading toward their respective destinations. Previous approaches have used hand-crafted functions based on proximity to model human-human and human-robot interactions. However, these approaches can only model simple interactions and fail to generalize for complex crowded settings. In this paper, we develop an approach that models the joint distribution over future trajectories of all interacting agents in the crowd, through a local interaction model that we train using real human trajectory data. The interaction model infers the velocity of each agent based on the spatial orientation of other agents in his vicinity. During prediction, our approach infers the goal of the agent from its past trajectory and uses the learned model to predict its future trajectory. We demonstrate the performance of our method against a state-of-the-art approach on a public dataset and show that our model outperforms when predicting future trajectories for longer horizons.Comment: Accepted at ICRA 201

    Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications

    Get PDF
    We consider the synthesis of control policies for probabilistic systems, modeled by Markov decision processes, operating in partially known environments with temporal logic specifications. The environment is modeled by a set of Markov chains. Each Markov chain describes the behavior of the environment in each mode. The mode of the environment, however, is not known to the system. Two control objectives are considered: maximizing the expected probability and maximizing the worst-case probability that the system satisfies a given specification

    STREETS: an agent-based pedestrian model.

    Get PDF
    8-11 Septembe

    Socially Aware Motion Planning with Deep Reinforcement Learning

    Full text link
    For robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e.g., passing on the right). However, while instinctive to humans, socially compliant navigation is still difficult to quantify due to the stochasticity in people's behaviors. Existing works are mostly focused on using feature-matching techniques to describe and imitate human paths, but often do not generalize well since the feature values can vary from person to person, and even run to run. This work notes that while it is challenging to directly specify the details of what to do (precise mechanisms of human navigation), it is straightforward to specify what not to do (violations of social norms). Specifically, using deep reinforcement learning, this work develops a time-efficient navigation policy that respects common social norms. The proposed method is shown to enable fully autonomous navigation of a robotic vehicle moving at human walking speed in an environment with many pedestrians.Comment: 8 page

    From individual behaviour to an evaluation of the collective evolution of crowds along footbridges

    Full text link
    This paper proposes a crowd dynamic macroscopic model grounded on microscopic phenomenological observations which are upscaled by means of a formal mathematical procedure. The actual applicability of the model to real world problems is tested by considering the pedestrian traffic along footbridges, of interest for Structural and Transportation Engineering. The genuinely macroscopic quantitative description of the crowd flow directly matches the engineering need of bulk results. However, three issues beyond the sole modelling are of primary importance: the pedestrian inflow conditions, the numerical approximation of the equations for non trivial footbridge geometries, and the calibration of the free parameters of the model on the basis of in situ measurements currently available. These issues are discussed and a solution strategy is proposed.Comment: 23 pages, 10 figures in J. Engrg. Math., 201

    Multi-agent simulation: new approaches to exploring space-time dynamics in GIS

    Get PDF
    As part of the long term quest to develop more disaggregate, temporally dynamic models of spatial behaviour, micro-simulation has evolved to the point where the actions of many individuals can be computed. These multi-agent systems/simulation(MAS) models are a consequence of much better micro data, more powerful and user-friendly computer environments often based on parallel processing, and the generally recognised need in spatial science for modelling temporal process. In this paper, we develop a series of multi-agent models which operate in cellular space.These demonstrate the well-known principle that local action can give rise to global pattern but also how such pattern emerges as the consequence of positive feedback and learned behaviour. We first summarise the way cellular representation is important in adding new process functionality to GIS, and the way this is effected through ideas from cellular automata (CA) modelling. We then outline the key ideas of multi-agent simulation and this sets the scene for three applications to problems involving the use of agents to explore geographic space. We first illustrate how agents can be programmed to search route networks, finding shortest routes in adhoc as well as structured ways equivalent to the operation of the Bellman-Dijkstra algorithm. We then demonstrate how the agent-based approach can be used to simulate the dynamics of water flow, implying that such models can be used to effectively model the evolution of river systems. Finally we show how agents can detect the geometric properties of space, generating powerful results that are notpossible using conventional geometry, and we illustrate these ideas by computing the visual fields or isovists associated with different viewpoints within the Tate Gallery.Our forays into MAS are all based on developing reactive agent models with minimal interaction and we conclude with suggestions for how these models might incorporate cognition, planning, and stronger positive feedbacks between agents

    Swarm potential fields with internal agent states and collective behaviour

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multi-agent robotic systems. In this paper we use a model for a system of self-propelled agents interacting via pairwise attractive and repulsive potentials. We develop a new potential field method using dynamic agent internal states, allowing the swarm agents' internal states to manipulate the potential field. This new method successfully solves a reactive path planning problem that cannot be solved using static potential fields due to local minima formation. Simulation results demonstrate the ability of a swarm of agents that use the model to perform reactive problem solving effectively using the collective behaviour of the entire swarm in a way that matches studies based on real animal group behaviour
    • …
    corecore