397 research outputs found

    Reactive Planar Manipulation with Convex Hybrid MPC

    Full text link
    This paper presents a reactive controller for planar manipulation tasks that leverages machine learning to achieve real-time performance. The approach is based on a Model Predictive Control (MPC) formulation, where the goal is to find an optimal sequence of robot motions to achieve a desired object motion. Due to the multiple contact modes associated with frictional interactions, the resulting optimization program suffers from combinatorial complexity when tasked with determining the optimal sequence of modes. To overcome this difficulty, we formulate the search for the optimal mode sequences offline, separately from the search for optimal control inputs online. Using tools from machine learning, this leads to a convex hybrid MPC program that can be solved in real-time. We validate our algorithm on a planar manipulation experimental setup where results show that the convex hybrid MPC formulation with learned modes achieves good closed-loop performance on a trajectory tracking problem

    Non-prehensile Planar Manipulation via Trajectory Optimization with Complementarity Constraints

    Get PDF
    Contact adaption is an essential capability when manipulating objects. Two key contact modes of non-prehensile manipulation are sticking and sliding. This paper presents a Trajectory Optimization (TO) method formulated as a Mathematical Program with Complementarity Constraints (MPCC), which is able to switch between these two modes. We show that this formulation can be applicable to both planning and Model Predictive Control (MPC) for planar manipulation tasks. We numerically compare: (i) our planner against a mixed integer alternative, showing that the MPCC planer converges faster, scales better with respect to time horizon, and can handle environments with obstacles; (ii) our controller against a state-of-the-art mixed integer approach, showing that the MPCC controller achieves better tracking and more consistent computation times. Additionally, we experimentally validate both our planner and controller with the KUKA LWR robot on a range of planar manipulation tasks

    Unwieldy Object Delivery with Nonholonomic Mobile Base: A Stable Pushing Approach

    Full text link
    This paper addresses the problem of pushing manipulation with nonholonomic mobile robots. Pushing is a fundamental skill that enables robots to move unwieldy objects that cannot be grasped. We propose a stable pushing method that maintains stiff contact between the robot and the object to avoid consuming repositioning actions. We prove that a line contact, rather than a single point contact, is necessary for nonholonomic robots to achieve stable pushing. We also show that the stable pushing constraint and the nonholonomic constraint of the robot can be simplified as a concise linear motion constraint. Then the pushing planning problem can be formulated as a constrained optimization problem using nonlinear model predictive control (NMPC). According to the experiments, our NMPC-based planner outperforms a reactive pushing strategy in terms of efficiency, reducing the robot's traveled distance by 23.8\% and time by 77.4\%. Furthermore, our method requires four fewer hyperparameters and decision variables than the Linear Time-Varying (LTV) MPC approach, making it easier to implement. Real-world experiments are carried out to validate the proposed method with two differential-drive robots, Husky and Boxer, under different friction conditions.Comment: The short version of the paper is accepted by RA

    Demonstration-guided Optimal Control for Long-term Non-prehensile Planar Manipulation

    Full text link
    Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine contact points and directions, which involves joint logic and geometrical reasoning in the modes of the dynamics model. To tackle this issue, we propose a demonstration-guided hierarchical optimization framework to achieve offline task and motion planning (TAMP). Our work extends the formulation of the dynamics model of the pusher-slider system to include separation mode with face switching cases, and solves a warm-started TAMP problem by exploiting human demonstrations. We show that our approach can cope well with the local minima problems currently present in the state-of-the-art solvers and determine a valid solution to the task. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with real Franka Emika robot in the presence of external disturbances

    Linear Time-Varying MPC for Nonprehensile Object Manipulation with a Nonholonomic Mobile Robot

    Get PDF
    This paper proposes a technique to manipulate an object with a nonholonomic mobile robot by pushing, which is a nonprehensile manipulation motion primitive. Such a primitive involves unilateral constraints associated with the friction between the robot and the manipulated object. Violating this constraint produces the slippage of the object during the manipulation, preventing the correct achievement of the task. A linear time-varying model predictive control is designed to include the unilateral constraint within the control action properly. The approach is verified in a dynamic simulation environment through a Pioneer 3-DX wheeled robot executing the pushing manipulation of a package
    • …
    corecore