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Non-prehensile Planar Manipulation via Trajectory Optimization with
Complementarity Constraints

João Moura1,2, Theodoros Stouraitis1, and Sethu Vijayakumar1,2

Abstract— Contact adaptation is an essential capability when
manipulating objects. Two key contact modes of non-prehensile
manipulation are sticking and sliding. This paper presents
a Trajectory Optimization (TO) method formulated as a Math-
ematical Program with Complementarity Constraints (MPCC),
which is able to switch between these two modes. We show that
this formulation can be applicable to both planning and Model
Predictive Control (MPC) for planar manipulation tasks. We
numerically compare: (i) our planner against a mixed integer
alternative, showing that the MPCC planner converges faster,
scales better with respect to the time horizon (TH), and
can handle environments with obstacles; (ii) our controller
against a state-of-the-art mixed integer approach, showing that
the MPCC controller achieves improved tracking and more
consistent computation times. Additionally, we experimentally
validate both our planner and controller with the KUKA
LWR robot on a range of planar manipulation tasks. See our
accompanying video here: https://youtu.be/EkU6YHMhjto.

I. INTRODUCTION

Moving beyond the typical pick-and-place tasks, towards
non-prehensile manipulation, requires providing robots with
the capability of adapting contact locations on the object.
However, achieving reliable robot manipulation via contact
adaptation still poses many challenges due to, among other
factors: (a) the under-actuated and hybrid nature of the
problem [1], [2]; and (b) the uncertainties arising from the
frictional contact interactions [3], [4]. Recent works [5]–[7]
have been addressing the problem of contact adaptation
by developing control and motion planning methods based
on Trajectory Optimization (TO) that explicitly incorporate
models of the contact interaction. Nevertheless, there are still
many open questions on both making plans with complex
contact interactions [8] realizable by robots and expanding
the capabilities of current contact-aware controllers [5], [9]
to reliably handle more challenging environments.

A. Related Work

Non-prehensile manipulation, a term introduced by Mason
[10], refers to manipulation without grasping, i.e. the rela-
tive pose between the object and the robots’ end-effectors
can change throughout the interaction. While that type of
manipulation can allow robots to execute a wider range of
tasks [1], executing such tasks with robots can prove itself
quite challenging, in part due to various mismatches between
the physical world and the respective models used for plan-
ning and control. One prominent and widely used task, also

1 Authors are with the School of Informatics, The University of Edin-
burgh, Edinburgh, U.K.

2 Authors are with The Alan Turing Institute, London, U.K.

Fig. 1. Experimental setup where the robot plans and controls the motion
of an object to push it to the target, via sliding contact and while avoiding
an obstacle.

introduced by Mason [1], for studying non-prehensile manip-
ulation is the planar pusher-slider example. This example, as
shown in Fig. 1, consists of a flat object—the slider—moving
on a planar surface, pushed by the end-effector of the robot—
the pusher. The pusher-slider example is especially useful
for exploring concepts such as the limit-surface model [11],
the motion cone concept [1], its generalization to a broader
set of planar tasks [12], tactile feedback [13], and dynam-
ics learning [4], [14]. Recently, Hogan and Rodriguez [2]
proposed a Model Predictive Controller (MPC) for reactive
tracking of nominal paths while reacting to disturbances.
They incorporate the selection of different contact modes,
such as sticking and sliding contact, in the MPC optimization
by using a mixed integer formulation. In this work, we
investigate the limitations of this formulation in the context
of both control and planning of planar sliding motions.

Recent works [6], [15]–[17] have developed TO meth-
ods for planning robot manipulation tasks requiring contact
changes. The underlying formulation of these works follows
one of two classes: contact-implicit [18] or multi-mode [6],
[19]. Here, we focus on the former which expresses the hy-
brid nature of the contact change as a Mathematical Program
with Complementarity Constraints (MPCC). For the problem
of making and breaking of contact, the complementarity
constraint typically takes the form of 0 ≤ d⊥f ≥ 0, where d
and f are, respectively, the distance and the normal force
between two objects of interest. This constraint enforces
both unilateral forces and that there is no penetration, while
encoding the hybrid condition that the objects are either in
contact or apart having, respectively, zero distance or zero
contact force between them. To the extend of our knowledge
no work has demonstrated the application of MPCC for robot
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control problems, due to its computational requirements, yet
we show that it is a particularly well suited formulation for
both planning and control of planar non-prehensile manipu-
lation problems with sticking and sliding contacts.

B. Problem Statement

In the Related Work we discuss a control formulation that
explicitly handles switching contact modes, which requires
high level methods to provide nominal paths. There are a
number of TO works capable of generating those nominal
hybrid motion paths, i.e. involving change of contacts, how-
ever, realizing these on hardware is still a subject of research.
Hence, we ask ourselves ”what is an appropriate numerical
optimal control formulation for non-prehensile manipulation
problems with sliding contact that is applicable to both
control and planning problems?” As a typical example
scenario, consider a robot pushing an object to a goal, as
shown in Fig. 1. In such a case, the robot needs to address
the following challenges:

• It has to plan a trajectory using both sticking and sliding
contact modes to drive the object to the target while
avoiding the obstacle;

• It has to control the motion of the object to track
the planned trajectory under the uncertainties of the
frictional contact interactions and other unknown dis-
turbances.

Contributions: This work addresses these challenges, by:

• Proposing a single MPCC formulation for both planning
and control (MPC) that enables switching between
sticking and sliding contact modes;

• Comparing it numerically with an alternative mixed
integer formulation, showing that the MPCC achieves
i) smaller tracking errors, ii) more reliable computation
times under large disturbances, iii) and better scalability
with regards to the time horizon (TH) and to a broader
range of problems, e.g. problems with obstacles;

• And finally, experimentally validating our MPCC for-
mulation using the KUKA LWR robot hardware.

II. BACKGROUND

This section revises three key models/assumptions com-
monly used in the literature for modelling the planar pusher-
slider system. Namely, the quasi-static assumption, the limit
surface, and the friction cone.

A. System Description

Fig. 2 illustrates a top down view of the planar pusher-
slider system, where (GxS ,

G yS) and θ are, respectively, the
Cartesian position and orientation of the sliding object—
the slider—with respect to a global reference G. Given a
known geometry of the slider r(φ), a single parameter φC
is sufficient to compute the position of the pushing object—
the pusher—as well as the contact point C, normal n and
tangential t directions.

θ

φC

r(φ)x

y

G

x

y

S
n t

C

Fig. 2. Illustration of the pusher-slider system.

B. Quasi-static Assumption

Let ω =
[
vx, vy, ωz

]>
and τ =

[
fx, fy, τz

]>
be, respec-

tively, the vectors of generalized velocities and forces for the
slider. Then we can write its Newtonian dynamics as

Iω̇ = τC + τP , (1)

where I is the inertia matrix of the slider, τC are the forces
due to lateral contacts (pusher) and τP are the forces due
to the sliding friction with the planar surface. However, it
is common practice in the literature to simplify the equation
of motion (1), by neglecting the inertial forces Iω̇, based on
the observation that for low velocities ω, frictional contact
forces dominate the motion dynamics of the pusher-slider
system [1]. Thus, we obtain τC = −τP .

C. Ellipsoidal Approximation of the Limit Surface

Now, we need to find a model for computing the friction
forces τP . Goyal et al. [11] introduced the idea of limit
surface that describes the mapping between τP and ω. In
this work, we use the following ellipsoidal approximation to
model the limit surface

H(τP ) , τ>P LτP , (2)

where L is a positive definite matrix [14]. This model
captures well the shape of the limit surface for pusher-slider
interactions with uniform pressure distributions [20]. Given
a convex limit surface H(τP ), the slider velocities will be
perpendicular to the limit surface [2], resulting in

ω = ∇H(τP ) = LτP . (3)

D. Motion Model

This subsection describes the motion model used to predict
and optimize the motion of the pusher-slider system. Given
the quasi-static assumption, the motion model becomes a
geometric kinematic model and, hence, the state simply
corresponds to the system configuration

x =
[
GxS ,

G yS , θ, φC
]>
, (4)

which describes the position and orientation of the pusher
and slider. A possible representation for the control is

u =
[
fn, ft, φ̇C+, φ̇C−

]>
, (5)

where fn and ft are, respectively, the normal and tangential
forces applied by the pusher to the slider, and φ̇C = φ̇C+ −
φ̇C− is the angular rate of sliding. Note that (5) is a redundant
representation that we will discuss in the next subsection.

For single contact and a rectangular object with con-
tact C and local S frames aligned, through simple geometric



transformations, using the ellipsoidal approximation of the
limit surface (3), and the quasi-static assumption, we obtain
the following equations of motion for the pusher-slider
system [2]

ẋ = f(x, u) =

[
RLJ>C 0 0

0 1 −1

]
u, (6)

with R(θ) being the xy-plane rotation matrix between the
slider local frame S and the global frame G, and

JC =

[
1 0 −SyC
0 1 SxC

]
being the contact Jacobian matrix.

E. Friction Constraints

Depending on the values that the redundant set of controls
in (5) take, the pusher-slider system can exhibit different
dynamic behaviours. Those different behaviours, or dynamic
modes, include sticking or sliding contact between the pusher
and the slider, or even no contact at all. Originally, Hogan and
Rodriguez [21] proposed a hybrid dynamics model for the
equations of motion f(·). Later, they [2] expressed the hybrid
nature of the system via constraints on the controls (5).
In that way, they separate the continuous dynamics of the
system, as in (6), from the hybrid component corresponding
to different active contact modes. The advantage of this
approach, in the context of formulating an optimization, is
the ease of transcribing the selection of contact modes, hence,
we stick with this approach.

Regardless of the active contact mode, we enforce a
unilateral constraint that allows only pushing of the slider,
as U0 : fn ≥ 0. Fig. 3 illustrates the three contact modes
considered, corresponding to the following sets of constraints

U1 :

{
φ̇C = 0

|ft| ≤ µfn
, U2 :

{
φ̇C > 0

ft = µfn
, and U3 :

{
φ̇C < 0

ft = −µfn
.

For a sticking contact, corresponding to U1 and illustrated by
Fig. 3a, the applied force has to remain within the friction
cone and the angular rate of sliding φC has to be zero. Note
that µ is the friction coefficient between the pusher and the
slider. For the sliding counterclockwise (ccw) contact mode,
corresponding to U2 and illustrated by Fig. 3b, the applied
force belongs to the one edge of the friction cone while φC
is positive. Finally, for the clockwise (cw) contact mode,
corresponding to U3 and illustrated by Fig. 3c, the applied
force belongs to the other edge of the friction cone while φC
is negative.

(a) (b) (c)
Fig. 3. Slider contact modes: (a) sticking; (b) sliding counterclockwise
(ccw); (c) sliding clockwise (cw).

III. METHOD

A. Mixed Integer Formulation
When developing an optimal control formulation for com-

puting trajectories for the pusher-slider system that is hybrid,
a natural way of incorporating contact modes switching is to
include one binary variable z per contact mode defining what
mode is active at any instance of time. Following this, we
can then formalize a Trajectory Optimization (TO) Mixed
Integer Non-Linear Program (MINLP) as follows

min
xi,ui,zi

C(x0:N , u0:N−1, z1:3,0:N−1) (7a)

subject to xi+1 = xi + ∆tf(xi, ui), xi ∈ X , (7b)
ui ∈ U0 (unilaterality), (7c)
ui ∈ U1 if z1,i = 1 (sticking), (7d)
ui ∈ U2 if z2,i = 1 (sliding ccw), (7e)
ui ∈ U3 if z3,i = 1 (sliding cw), (7f)
z1,i + z2,i + z3,i = 1, (7g)

where X is the set of feasible states, including state bounds
and obstacles, and i denotes the index of the knot, i.e. the
discretization points of the transcribed problem. The cost
function is C(x0:N , u0:N−1, z1:3,0:N−1) = x̄>NWxN

x̄N +∑N−1
i=0 (x̄>i+1Wxx̄i+1+ū>i Wuūi+

∑3
j=1 wzzj,i), where x̄i =

xi − x∗i is the difference between the state xi and the goal
state x∗i , We implement (7d), (7e), and (7f) through the big
M formulation [22].

The MINLP in (7) is inspired by the Mixed Integer
Quadratic Programming (MIQP) proposed by Hogan and
Rodriguez [2]. The key difference is that the formulation
in [2] requires linearization along a given nominal path
(states and actions). The MIQP is a suitable formulation
for control because quadratic programs are generally very
fast to solve. However, it is unsuitable for planning, i.e.
generating trajectories, as it requires both nominal states
and actions as reference, and mixed integer programs tend
to scale badly due to the combinatorial expansion when
exploring the solution space of the integer variables.

B. Complementary Constraints
Another way of expressing different modes in hybrid

systems is to use complementarity constraints, which have
recently been widely used in many TO based planning
methods for robotics [8], [9], [17], [18]. The complemen-
tarity constraints remove the need of using integer variables
in the optimization problem. Particular to the pusher-slider
problem, the key insight for exploring complementarity
constraints instead of a mixed integer formulation is that,
even though the dynamics are hybrid, the transition between
the different modes is continuous, meaning that the system
can transition from the currently active contact mode to any
other contact mode, at any instant in time. Note that for the
scenario of making and breaking of contact [8], [17], [18],
when far away from contact it is physically infeasible to
instantaneously transition to contact. This additional guard
condition ensuring that mode transitions only occur from
certain state space regions is nonexistent in our problem.



Let us introduce a vector of two variables that correspond
to the edge of the friction cone

λv ,
[
λ−, λ+

]>
,
[
µfn − ft, µfn + ft

]>
. (8)

It is straightforward to show that the second inequality
in U1 corresponds to having λ−, λ+ ≥ 0. We also intro-
duced the control variables φ̇C+, φ̇C− in (5) rather than
using φ̇C = φ̇C+− φ̇C−, as in [2], to enable the formulation
of the complementarity constraint. In this way, we can
obtain: the sticking contact mode when both φ̇C+, φ̇C− = 0
and λ−, λ+ ≥ 0; the sliding ccw contact mode U2 when
both φ̇C−, λ− = 0 and φ̇C+ ≥ 0; and the sliding cw contact
mode U3 when both φ̇C+, λ+ = 0 and φ̇C− ≥ 0.

By defining the vector φ̇v ,
[
φ̇C+, φ̇C−

]>
, we can easily

verify that the complementarity constraint condition λ>v φ̇v =
0, with φ̇C+, φ̇C−, λ−λ+ ≥ 0, simultaneously satisfies all
the constraints required by the three contact modes. There-
fore, we can define the complementarity constraints as

Ucc :

{
φ̇C+, φ̇C−, λ−λ+ ≥ 0

λ>v φ̇v + ε = 0
, (9)

where we introduce a slack variable ε. This variable will be
zero when the contact mode constraints are fully satisfied.
We introduce this variable because it is well known in the lit-
erature that problems with complementarity constraints are in
practise difficult to solve, usually requiring relaxations [23].

C. Non-Linear Programming (NLP)

We can then formalize our TO Mathematical Program with
Complementarity Constraints (MPCC) as follows

min
xi,ui,εi

C(x0:N , u0:N−1, ε0:N−1) (10a)

subject to xi+1 = xi + ∆tf(xi, ui), xi ∈ X , (10b)
ui ∈ U0 (unilaterality), (10c)
ui, εi ∈ Ucc (complementarity), (10d)

where the cost function is C(x0:N , u0:N−1, ε0:N−1) =
x̄>NWxN

x̄N +
∑N−1
i=0 (x̄>i+1Wxx̄i+1 + u>i Wuui + wεiε

2
i ).

Changing formulation (10) from a tracking to a planning
problem is simply a matter of specifying the full nominal
state trajectory x∗0:N or specifying the final state target x∗N ,
respectively. Also, using (10) for planning full trajectories
or as a Model Predictive Controller (MPC) is also a matter
of changing the horizon N , such that for a small enough
horizon we can solve (10) online in a control loop.

IV. EXPERIMENTS AND RESULTS

This section presents numerical and robot experiments
performed using the MPCC formulation given in (10). We
compare the MPCC formulation against MIQP [2] for track-
ing trajectories, and against MINLP given in (7) for planning
trajectories. We implemented all optimization using CasADi
[24]. We used the Knitro solver [25] for both the MPCC
and MINLP problems and the Gurobi solver [26] for
the MIQP. We ran all the computations in a 64-bit Intel
16-Core i9 3.60GHz workstation with 64GB RAM.

For every experiment, the cost function gain matrices
are Wx = diag(1, 1, 0.01, 0.001), Wu = 10−2diag(1, 1, 0, 0),
and WxN

= 10Wx. Note that planning problems only have
a single state target x∗N , hence we only use WxN

. For
the mixed integer formulations wz = 0. For the MPCC
formulation wεi = 50 for the planning problems while
for the tracking problems wεi = 50 for the first knot
reducing exponentially to 0.1 for the last knot. The number
of discretization steps of the MPC is 25 steps with ∆t =
1/25 s, which results in total TH of T = 1 s. We use a
friction coefficient of µ = 0.2 for the numerical experiments
and µ = 0.1 for the robot experiments. We compute L in (3)
according to [2].

For the actual robot experiments, the MPC runs in a 50 Hz
control loop. In each MPC loop, we measure the position
and orientation of the slider through a Vicon tracking
system to generate the initial state x0. We then run the
optimization (10) and only make use of the first state x1 of
the solution trajectory, from which we compute the position
of the pusher and, through standard inverse kinematics, the
respective configuration of the robot. The accompanying
video shows the robot experiments detailed in this section.

A. Numerical Experiments — Tracking Nominal Trajectory

This experiment investigates the feasibility of the pro-
posed MPCC formulation for tracking in an MPC loop.
We compare the MPCC against the MIQP [2], for the task
of tracking two different pre-specified nominal trajectories,
a circular and an eight-shaped one. We generate pairs of
nominal states and actions, which is a requirement from
the MIQP (the MPCC only requires nominal states), for
a pushing motion with a sticking contact. Both nominal
trajectories have a total duration of 10 s with sampling times
of ∆t = 1/25 s. The sliding object is rectangular with
dimensions 7× 12 cm and the pusher has a radius of 1 cm.

Fig. 4a shows the tracking of the circular trajectory. We
offset the initial state to x0 = [−0.03 m, 0.03 m, 30 °, 0]>

and at the 5th second introduce a disturbance of ∆x =
[0.03 m,−0.03 m, 30 °, 0]>. Both MPCC and MIQP formu-
lations are able to track the nominal trajectory, however
the MPCC recovers quicker after both the initial state offset
and the disturbance. Fig. 5a shows the computation times for
this experiment. In the absence of disturbances both methods
are able to compute solutions faster than 20 ms (> 50 Hz).
However, when large deviations from the nominal trajectory
occur the MIQP computation time increases significantly—
rendering this method inappropriate for online use with large
disturbances. Additionally, we noticed that MIQP easily be-
comes unstable under larger disturbances unlike the MPCC.

Furthermore, we compare the MPCC and the MIQP con-
trollers for multiple runs on the circular trajectory when
subject to angular disturbances, but without initial state
offset. In this experiment, we add a disturbance to the
dynamics (6) as ẋ = f + ε, where ε =

[
0, 0, εθ, 0

]>
and

we draw εθ ∼ U(−ωM , ωM ) from an uniform distribution.
Fig. 5b shows the evolution of the position trajectory error,
computed as the distance between each point of the actual
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and the nominal trajectories, for increasing ωM , where for
each value of ωM we ran both controllers for tracking ten full
circles, equating to a total of 2500 MPC loops. Fig. 5b shows
that the MPCC results in a significant lower tracking error.
For the same experiment, but now with a constant ωM =
1.5 rad s−1, we vary the horizon N , and compute the MPC

computation time. Fig. 5c shows that the MPCC scales better.

Fig. 4b shows the tracking of the eight-shaped trajectory,
showing that the MPCC achieves qualitatively better tracking
than the MIQP. Note that the MIQP linearises the dynamics
along the nominal states and actions, which makes its track-
ing quality highly depend on the accuracy of the nominal



(a) (b) (c) (d) (e) (f)
Fig. 6. Keyframes of the KUKA LWR robot tracking an ellipsoidal trajectory, where (a-c) show the sliding of the object along an aggressive curvature
segment of the trajectory, and (d-f) exhibit the MPC recovering from a disturbance.

state and action pairs. However, obtaining accurate nominal
actions in scenarios with aggressive curvature, like the one
shown in Fig. 4b, is often unachievable. In contrast to MIQP,
the MPCC dispenses with both the linearization and the
nominal actions, which might explain its improved tracking.

B. Numerical Experiments — Planning

In this experiment, we test the capabilities of the MPCC
formulation to generate trajectories by exploiting sticking
and sliding contact modes. These trajectories drive the slid-
ing object from an initial state to a desired target state—
even in the presence of obstacles. We compare the MPCC
formulation against the MINLP, see (7), both in terms of
convergence and computation time. The planning tasks have
as initial state x0 = [0, 0, 0, 0]> and as target state x∗N =
[0.3 m, 0.4 m, 270 °, 0]>. For the scenario with the obstacles
each obstacle has a radius of 5 mm. We encode the obstacles
in (10) as inequality constraints on the distance between the
obstacle and the center of the sliding object.

Fig. 4c shows an example of a trajectory generated for
a TH of T = 3 s. Additionally, we generated trajectories
for the same task but with varying TH, from 3 s to 15 s.
Fig. 5d shows the respective computation times, showing
that the MPCC takes significantly less time than the MINLP
to converge and scales well with respect to the TH. Fur-
thermore, for the scenario including obstacles, the MINLP
always failed to converge to a solution, while the MPCC
was able to produce plans, like the one shown in Fig. 4d.
Note, however, that the MPCC optimization was able to
produce planning solutions at the cost of non zero values for
the complementarity slack variables, unlike the case when
using MPCC for tracking with MPC, which always gave
solutions with zero slack.

C. Robot Experiment — Tracking Nominal Trajectory

In this experiment, we used the KUKA LWR robot to
assess our MPC implementation of the MPCC formulation
for the task of tracking an ellipsoidal trajectory. The radius
of the pusher is 16 mm and the size of the box is 9×20 cm.

Fig. 4e and 4f depict two tracking experiments, one
without and one with disturbances, respectively. Fig. 6 shows
a sequence of images of the robot tracking the ellipsoidal
trajectory, where 6a–6c correspond to the moment when
the robot turns the object around one of the corners of
the ellipse using a sliding motion, and 6d–6f correspond to
the moment when the robot recovers from a disturbance. In

the accompanying video, we also show the MPC modestly
handling dynamic obstacles. Due to its short sighed TH—
only 1 s—it only reacts when the obstacle is imminent.

D. Robot Experiment — Planning
In the final experiment, we demonstrate both planning a

trajectory with obstacles and tracking that trajectory using
the proposed MPCC formulation. The planning TH was T =
22 s. Fig. 4g shows both the planning and the tracking tra-
jectories for both the slider and the pusher. This experiment
exemplifies the flexibility of our MPCC formulation, which
is able to both plan and control the non-holonomic pusher-
slider system—just by adjusting the TH of the problem.

V. SUMMARY AND DISCUSSION

This paper presents a Mathematical Program with Com-
plementarity Constraints (MPCC) formulation for generating
hybrid trajectories for planar pushing manipulation tasks. We
show that this formulation is able to: (i) plan trajectories
that exploit both sticking and sliding contact modes in
scenarios with obstacles, and (ii) track nominal trajectories,
using an MPC loop, under external disturbances and model
uncertainties. We compare the proposed MPCC formulation
with the mixed integer alternatives, i.e. with MINLP for
planning trajectories and MIQP for control, showing that
our formulation is i) computationally faster for planning
problems, ii) computationally more reliable across different
scenarios, iii) and better able to track challenging nominal
trajectories and recover from disturbances. Furthermore, we
tested our planner and MPC implementation on a KUKA
LWR robot setup without any model identification, which
demonstrates the reliability of the proposed controller.

This work demonstrates the potential of using comple-
mentarity constraints within an MPC for planar manipulation
tasks involving contacts with friction. It remains to study the
scalability of such approach with respect to number of con-
tacts and different tasks, such as pivoting or non quasi-static
scenarios. For future work, we will focus on improving the
tracking performance via model selection and identification.
Additionally, we aim to improve the MPC computation times
towards increasing the time horizon, making it less short-
sighted, and enabling its deployment in environments with
highly dynamic obstacles.
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