2,550 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    On load balancing via switch migration in software-defined networking

    Get PDF
    Switch-controller assignment is an essential task in multi-controller software-defined networking. Static assignments are not practical because network dynamics are complex and difficult to predetermine. Since network load varies both in space and time, the mapping of switches to controllers should be adaptive to sudden changes in the network. To that end, switch migration plays an important role in maintaining dynamic switch-controller mapping. Migrating switches from overloaded to underloaded controllers brings flexibility and adaptability to the network but, at the same time, deciding which switches should be migrated to which controllers, while maintaining a balanced load in the network, is a challenging task. This work presents a heuristic approach with solution shaking to solve the switch migration problem. Shift and swap moves are incorporated within a search scheme. Every move is evaluated by how much benefititwillgivetoboththeimmigrationandoutmigrationcontrollers.Theexperimentalresultsshowthat theproposedapproachisabletooutweighthestate-of-artapproaches,andimprovetheloadbalancingresults up to≈ 14% in some scenarios when compared to the most recent approach. In addition, the results show that the proposed work is more robust to controller failure than the state-of-art methods.Portuguese Science and Technology Foundation (FCT) - UID/MULTI/00631/2019;info:eu-repo/semantics/publishedVersio

    Low-Effort Specification Debugging and Analysis

    Get PDF
    Reactive synthesis deals with the automated construction of implementations of reactive systems from their specifications. To make the approach feasible in practice, systems engineers need effective and efficient means of debugging these specifications. In this paper, we provide techniques for report-based specification debugging, wherein salient properties of a specification are analyzed, and the result presented to the user in the form of a report. This provides a low-effort way to debug specifications, complementing high-effort techniques including the simulation of synthesized implementations. We demonstrate the usefulness of our report-based specification debugging toolkit by providing examples in the context of generalized reactivity(1) synthesis.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Outsmarting Network Security with SDN Teleportation

    Full text link
    Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call \emph{teleportation}. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.Comment: Accepted in EuroSP'1
    corecore