328,415 research outputs found
Forces due to a Command Service Module reaction control motor plume impinging on the Saturn 5 cluster arrangement Dry workshop version
Impingement loadings on Saturn 5 workshop cluster arrangement due to command service module reaction control moto
Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response
Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations
Use of control umbilicals as a deployment mode for free flying telerobotic work systems
Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer
Moisture-temperature degradation in module encapsulants: The general problem of moisture in photovoltaic encapsulants
A general research approach was outlined toward understanding water-module interactions and the influence of temperature involving the need to: quantify module performance loss versus level of accumulated degradation, establish the dependence of the degradation reaction rate on module moisture and temperature levels, and determine module moisture and temperature levels in field environments. These elements were illustrated with examples drawn from studies of the now relatively well understood module electrochemical degradation process. Research data presented include temperature and humidity-dependent equilibrium leakage current values for multiparameter module material and design configurations. The contributions of surface, volume, and interfacial conductivities was demonstrated. Research directions were suggested to more fully understand the contributions to overall module conductivity of surface, volume, and interfacial conductivities over ranges of temperature and relative humidity characteristic of field environments
Design, fabrication, and bench testing of a solar chemical receiver
Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration
A review of thermal control coating degradation by the service module reaction control system rocket exhaust and estimated effects on Skylab
Effects on Skylab of thermal control coating degradation by service module reaction control system rocket exhaus
Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis
The genetic regulatory network (GRN) plays a key role in controlling the
response of the cell to changes in the environment. Although the structure of
GRNs has been the subject of many studies, their large scale structure in the
light of feedbacks from the metabolic network (MN) has received relatively
little attention. Here we study the causal structure of the GRNs, namely the
chain of influence of one component on the other, taking into account feedback
from the MN. First we consider the GRNs of E. coli and B. subtilis without
feedback from MN and illustrate their causal structure. Next we augment the
GRNs with feedback from their respective MNs by including (a) links from genes
coding for enzymes to metabolites produced or consumed in reactions catalyzed
by those enzymes and (b) links from metabolites to genes coding for
transcription factors whose transcriptional activity the metabolites alter by
binding to them. We find that the inclusion of feedback from MN into GRN
significantly affects its causal structure, in particular the number of levels
and relative positions of nodes in the hierarchy, and the number and size of
the strongly connected components (SCCs). We then study the functional
significance of the SCCs. For this we identify condition specific feedbacks
from the MN into the GRN by retaining only those enzymes that are essential for
growth in specific environmental conditions simulated via the technique of flux
balance analysis (FBA). We find that the SCCs of the GRN augmented by these
feedbacks can be ascribed specific functional roles in the organism. Our
algorithmic approach thus reveals relatively autonomous subsystems with
specific functionality, or regulatory modules in the organism. This automated
approach could be useful in identifying biologically relevant modules in other
organisms for which network data is available, but whose biology is less well
studied.Comment: 15 figure
- …
