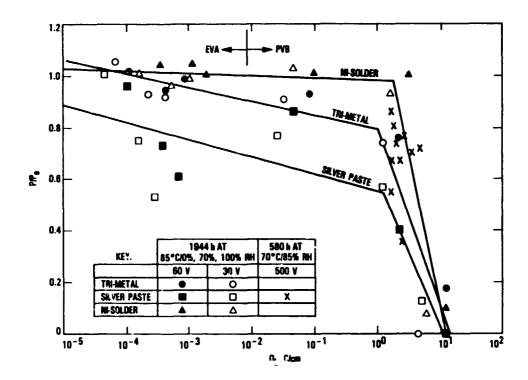
provided by NASA Technical Repu

MOISTURE-TEMPERATURE DEGRADATION IN MODULE ENCAPSULANTS

JET PROPULSION LABORATORY

G.R. Mon

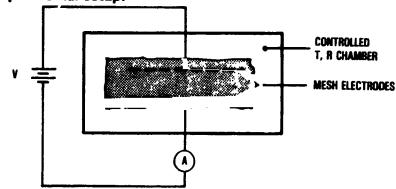

The General Problem of Moisture in Photovoltaic Encapsulants

- Water transport
 - · Rain, snow
 - Condensation, dew
 - Changes in water vapor pressure
- Effects of water in photovoltaic modules
 - Swelling of polymers and gaskets
 - Delamination of encapsulant
 - Galvanic (contact) corrosion
 - Electrochemical (leakage current) corrosion
 - Plays an active role in
 - Photo degradation
 - Voltage breakdown

General Research Approach

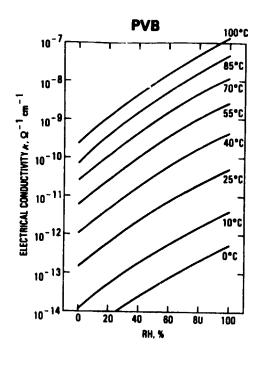
- For a given degradation mechanism, establish module performance loss versus level of accumulated degradation
- Establish dependence of rate of degradation reaction on moisture and temperature level in module
- Establish moisture and temperature level in module versus time in field environment and module construction
 - Sealed module
 - Partially sealed module
 - Unsealed module

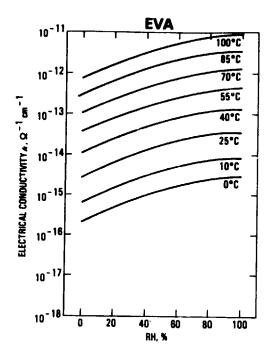
Power Output Reduction vs Accumulated Unit Charge Transfer

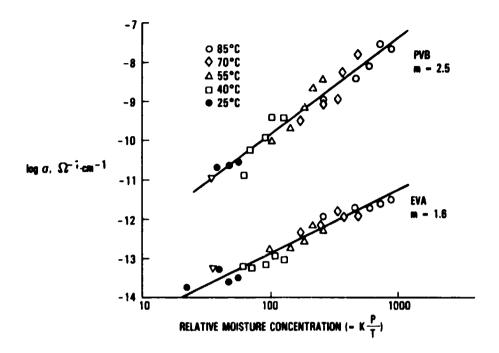


Electrochemical Corrosion: Analysis of Leakage Current

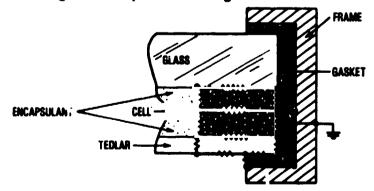
- Leakage Current
 - Leakage current (rate of transfer of charge) is responsible for electrochemical corrosion
 - Leakage current magnitude is determined by
 - Applied (or generated) voltage V
 - Insulation (encapsulant) surface and volume conductivities
- Encapsulant conductivity
 - Insulation conductivity increases with increasing
 - Temperature
 - Moisture content


Experimental Determination of the Electrical Conductivity of PVB and EVA


• Experimental setup:


- Equilibrium values measured by Professor J. Orehotsky
- Experimental equilibric n values were processed, yielding sets of "best-fit" data curves

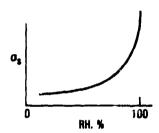
Electrical Conductivity of PVB and EVA



Bulk Conductivity vs Moisture Concentration (From Orehotsky Data and Ideal Gas Law)

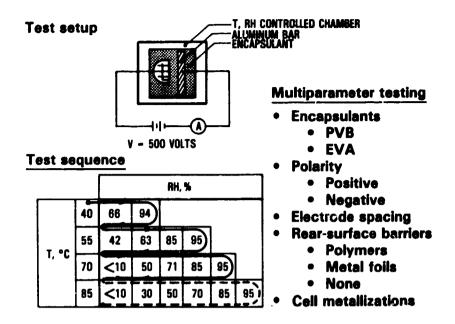
Module Performance Analysis

- Life prediction requires calculation of charge transfer in a real module
 - Through the bulk pottant
 - Along material interfaces
 - On free surfaces
- · Leakage current path modelling

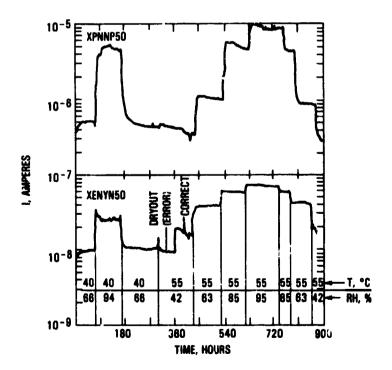


Research Questions About Module Conductivity

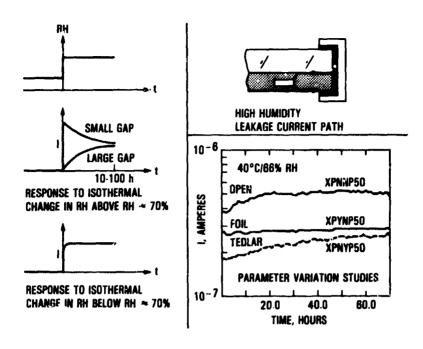
- Over what ranges of temperature and relative humidity do the various conductivities dominate overall module conductivity?
- In what ways do the various forms of water in polymers contribute to overall module conductivity?
 - Bound water
 - Free water
 - Clustered water
- Does exposure to liquid water result in same measured conductivity values as exposure to saturated water vapor?

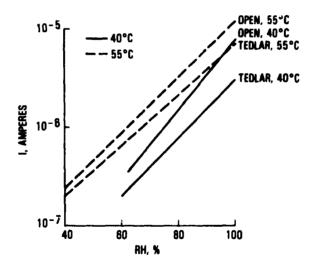

General Dependencies Involving Insulation Electrical Conductivities

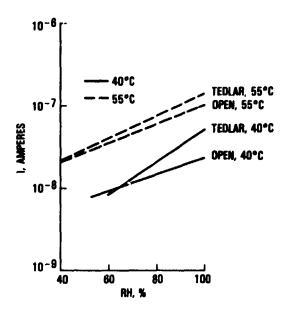
- Surface conductivity values are strongly affected by contaminants
- Surface conductivity responds rapidly to changes in relative humidity and surface-water films



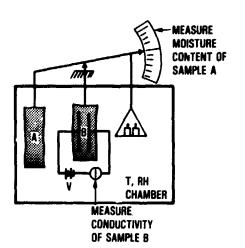
- Volume conductivity responds rapidly to changes in temperature, less rapidly to changes in relative humidity
- $\sigma_V = Ae^{-E/T}$ (ASTM D257-78)
- Generally, $\sigma_s > \sigma_v$

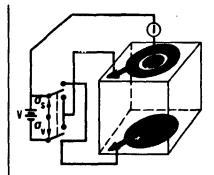

Experiments to Determine Module Equilibrium Leakage Current Levels and Response to Parameter Variation


Current vs Time


Some General Observations

Leakage Current Sensitivity to Relative Humidity at 40°C and 55°C: PVB, Positive Polarity, 50-Mil Gap


Leakage Current Sensitivity to Relative Humidity at 40°C and 55°C: EVA, Positive Polarity, 50-Mil Gap


Conclusion

 Because of the importance of bulk, interfacial, and free-surface conductivities, additional experiments are necessary to separate the relative contributions of these to overall module conductivity

Direct Conductivity Measurements

- Cahn balance sorption test
 - c = S(T) RH
 - $\sigma = \sigma(V; T, c (T, RH))$
 - $= \sigma(V; T, RH)$

- Guarded electrode measurements
 - Surface and volume conductivities
 - PVB
 - EVA
 - Interfacial conductivity
 - Glass/polymer
 - Polymer/Tedla: