10 research outputs found

    Reachability Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Inference

    Get PDF
    We present an approach to construct reachable set overapproxi- mations for continuous-time dynamical systems controlled using neural network feedback systems. Feedforward deep neural net- works are now widely used as a means for learning control laws through techniques such as reinforcement learning and data-driven predictive control. However, the learning algorithms for these net- works do not guarantee correctness properties on the resulting closed-loop systems. Our approach seeks to construct overapproxi- mate reachable sets by integrating a Taylor model-based flowpipe construction scheme for continuous differential equations with an approach that replaces the neural network feedback law for a small subset of inputs by a polynomial mapping. We generate the polynomial mapping using regression from input-output sam- ples. To ensure soundness, we rigorously quantify the gap between the output of the network and that of the polynomial model. We demonstrate the effectiveness of our approach over a suite of bench- mark examples ranging from 2 to 17 state variables, comparing our approach with alternative ideas based on range analysis

    NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems

    Get PDF
    This paper presents the Neural Network Verification (NNV) software tool, a set-based verification framework for deep neural networks (DNNs) and learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection of reachability algorithms that make use of a variety of set representations, such as polyhedra, star sets, zonotopes, and abstract-domain representations. NNV supports both exact (sound and complete) and over-approximate (sound) reachability algorithms for verifying safety and robustness properties of feed-forward neural networks (FFNNs) with various activation functions. For learning-enabled CPS, such as closed-loop control systems incorporating neural networks, NNV provides exact and over-approximate reachability analysis schemes for linear plant models and FFNN controllers with piecewise-linear activation functions, such as ReLUs. For similar neural network control systems (NNCS) that instead have nonlinear plant models, NNV supports over-approximate analysis by combining the star set analysis used for FFNN controllers with zonotope-based analysis for nonlinear plant dynamics building on CORA. We evaluate NNV using two real-world case studies: the first is safety verification of ACAS Xu networks and the second deals with the safety verification of a deep learning-based adaptive cruise control system

    Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural Network Controllers via Semidefinite Programming

    Full text link
    There has been an increasing interest in using neural networks in closed-loop control systems to improve performance and reduce computational costs for on-line implementation. However, providing safety and stability guarantees for these systems is challenging due to the nonlinear and compositional structure of neural networks. In this paper, we propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback interconnection. Our technical approach relies on abstracting the nonlinear activation functions by quadratic constraints, which leads to an outer-approximation of forward reachable sets of the closed-loop system. We show that we can compute these approximate reachable sets using semidefinite programming. We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system
    corecore